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Abstract. Convolutional neural networks (CNNs) have helped medical practitioners re-design 

the diagnosis of electroencephalogram (EEG) recordings, resulting in a level of accuracy and 

efficiency that matches or exceeds experts in the field. This study aims to explore the application 

of VGG19, an algorithm based on CNN architecture, to diagnose small subsets of 

neurodegenerative diseases, specifically amyotrophic lateral sclerosis (ALS), a disease that 

reduces the nervous system’s ability to control the muscles of the body. Since EEG recordings 

are scarce for ALS, this study will use a larger collection of EEG recordings taken on patients 

with more common neurological diseases, including but not limited to: Alzheimer’s, seizures, 

and epilepsy. This learning was then transferred over to a smaller dataset containing recordings 

of ALS patients.  The model was able to achieve an accuracy of 80% on the large collection and 

68% on the ALS dataset. These results demonstrate that it is possible to use the transfer learning 

from VGG19 and achieve accurate results when applying it to smaller sets of EEG recordings 

related to different types of neurological diseases. The current methods used to diagnose ALS 

are either invasive or expensive. With the increased ability to diagnose using EEG recordings, 

early detection of ALS and better patient care can also be achieved. 

1   Introduction 

EEG recordings are scans that utilize electrodes on the scalp to measure 

electrical activity of the brain. They are used to diagnose brain related illnesses and 

conditions such as epilepsy, sleep disorders, and brain tumors. Currently, EEG readings 

are interpreted by hand and requires a skilled specialist such as a physician or 

neurologist to determine if an abnormality is present in the scan. This process can take 

time and is easily prone to human error. In many cases, it is possible that different 

specialists disagree in the diagnosis of a reading. Introducing an automated and accurate 

model to this process would reduce the burden on physicians and deliver faster, more 

reliable outputs for patients. This study will utilize scans taken over 15 years to develop 

a large-scale classification method that can be transferred to smaller datasets taken on 

ALS patients and will show that transfer learning can be a useful tool in diagnosing rare 

neurodegenerative diseases. 
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ALS poses many problems when it comes to diagnosis. Firstly, many of the 

methods are expensive or invasive, such as MRI’s or spinal taps. The diagnosis can also 

be difficult due to the fact that many of the symptoms of ALS are similar to those of 

other neurological diseases. Diagnosis comes down to ruling out all other possibilities 

until ALS is the only disease left. Using EEG recordings is more cost effective when 

compared to MRI’s. Also, using EEG recordings is easier for the patient than spinal 

taps. Along with improving patient care, a model allows researchers to perform feature 

analysis on EEG data and begin to pinpoint the signals that are unique to ALS. 

One of the more popular approaches to classifying EEG recordings is utilizing 

neural networks, which are machine learning models inspired by the structure and 

function of the human brain. A more specific type of neural networks, CNNs, are used 

specifically for analyzing visual data, such as EEGs. CNNs are better equipped at 

handling spatial information compared to normal neural networks. This is done by 

employing convolutional filters that perform tasks such as edge detection for image 

classification problems. Methodologies attempting to automate EEG classification have 

resulted in a range of different accuracies. Most applications have been validated on 

single study groups and are able to achieve between 55% to 90% accuracy.  

This research aims to use VGG19, a form of CNN, and other deep learning 

techniques to help automate the interpretation of ALS EEG readings. VGG19, an 

improvement on CNNs created by the Visual Geometry Group, makes use of 19 

convolutional layers and a large body of images to “pretrain” the model. This training 

can then be leveraged in other image classification tasks. The capability of VGG19 to 

transfer its learning and its widespread use made it an obvious choice for this research. 

In order to make use of EEG images in VGG19, the images must first be 

imported in their native form (figure 1). 
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 Fig. 1. An EEG reading produced using an .edf file from the TUH EEG Corpus. The readings 

represent voltage changes over time for each signal. The readings are broken into sections with 

lines one through four being the readings for the left sided chain. Lines five through eight being 

the right-side chain. Lines nine through twelve being the transverse chain. Lines thirteen and 

fourteen being the left and right eye electrodes, and the remaining lines being movements of the 

body. 

Hidden within these separate readings are four different waveforms. 

Frequency will be used to differentiate between the different waveforms. First, there 

are delta wave forms with a frequency between 0-4 Hz. These are waveforms specific 

to slow wave sleep. If these are seen in a patient that is fully awake, then an issue is 

present. Second, there are theta waves between 4-8 Hz. These are typically related to 

drowsiness or slowed thinking while awake. Third, there are Alpha waves with a 

frequency between 8-13 Hz. These waveforms are associated with an individual that is 

awake with a normal functioning brain. Finally, there are Beta waves between 13-30 

Hz which are related to stimulus or intense logical thinking. An EEG recording will be 

a mixture of these different readings.  
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This will not be the final form of the EEG recordings. The frequency readings 

must be converted into spectrograms. Spectrograms give a visual representation of the 

different frequencies present in each signal's waveform (figure 2).  This allows for more 

information about the waveform to be collected in an image which can be easily fed 

into the VGG19 model. 

 

  

 Fig. 2. A spectrogram showing component frequencies of an EEG signal. The colors represent 

the power of the frequency or the contribution of that single wave towards the overall waveform. 

 Several studies have shown that CNNs are able to accurately classify 

Alzheimer's, Parkinson’s, seizures, and other neurodegenerative diseases. However, 

few studies focus on attempting to classify recordings of patients who have been 

diagnosed with ALS. ALS can be identified in patients who are already showing clear 

signs of the disease, but the degradation to the brain begins months to years before the 

diagnosis appears.  

 

2   Literature Review 

 This literature review will be focused on four areas surrounding the problem 

of classifying EEG recordings: models that utilize EEG recordings, reducing noise in 

EEG signals for classification, current CNN research applied in seizure research, and 

ALS and the current status of collecting ALS EEG recordings. 

2.1 Models Used for EEG Recording Classification  
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In a paper published by (Ferri, et al., 2020) the team poses multiple outcomes 

due to the research done on EEG and MRI recordings. The current paper will focus on 

and use the portion of Ferri’s paper that deals with identifying Alzheimer’s using 

machine learning. The team focused on developing the accuracy of Artificial Neural 

Networks by combining EEG and MRI recordings. The difference between accuracy 

when running on either set of data alone was increased significantly when running with 

both the MRI and EEG combined. This suggests that EEG alone may only be able to 

go so far in producing a diagnosis and other sources of data should be considered. If it 

is found that a CNN lacks accuracy when classifying neurodegenerative events with 

EEG alone, MRI scans may be incorporated. 

A simpler approach would be a form of regression. Regression also serves as 

a reasonable baseline for the potential performance of more complex models. In the 

work by (Li et al., 2019) a graph regularized sparse linear regression model is applied 

to EEG recordings, with the goal being to identify the emotions of the subjects. They 

also used SVM and GraphSC as baselines to compare against the GRSLR model. The 

GRSLR model was able to achieve an accuracy of 67.97% which was between one to 

twenty percent more accurate than those used for comparison. While this does not 

directly correlate to neurological diseases, it shows that linear regression can be used 

accurately to read and interpret EEG recordings.  

In the review published in (Craik et al., 2019) the Journal of Neural 

Engineering, it is shown that CNNs (or variants of CNNs) are frequently used when 

approaching EEG classification tasks. The CNNs and each variant also made use of a 

fully connected layer. CNNs were leveraged heavily across every major form of EEG 

classification. Emotion recognition, motor imagery, mental workload, seizure 

detection, sleep stage scoring, and ERP (Event Related Potential). None of the studies 

focused specifically on neurological diseases in EEGs.  

Following close behind CNNs were Deep Belief Network (DBN) models. 

CNNs have been shown to outperform DBN’s when tackling computer vision 

problems, making it surprising that a large amount of literature has made use of DBN’s 

for EEG classification. It is possible that DBN’s are favored in cases of noisy data or 

when EEG data is collected in abnormal scenarios. Since CNNs are highly dependent 

on their trained data they are weak to strong abnormalities. DBN’s on the other hand 

are pre-trained on unlabeled examples. This could mean that the DBN models used for 

classification were able to learn patterns in the data that may have slipped past the 

technician that labeled the original data. If a highly trained human eye was fooled by 

an abnormal blip, it is highly likely that the CNN will be fooled as well. However, in 

practice CNNs outperform even on EEG tasks, but a combination of these two methods 

may give the best of both worlds.  

In work done by Yuangfang Ren and Yan Wu (Ren et al., 2014) on unlabeled 

EEG data there is a promising hope for CDBN models. With this dataset the team was 

able to achieve accuracy scores around 85%, outperforming both CSP and MVAAR. It 

would have been good to benchmark this data against a CNN model, but without 

unlabeled data it may have been an apples and oranges comparison. The team's 
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justification for using CDBN is compelling. CDBN was used here specifically to 

address the issues with classifying full images or high-dimensional data. Since high-

dimensional data drives up computation, CDBN allows for the reduction of 

computations by sharing weights among the hidden and visible layers.  CDBN, in the 

eyes of the researchers, is ideal for EEG data since it has several high-dimensional 

multi-channel data points.   

It is important to note that most of the studies covered in this review used 

private data sources. This makes it difficult in practice to apply the accuracy values that 

they boast, without the ability to double check the data and its classifications. 

2.2 Reducing noise in EEG signals for classification 

One issue that solutions attempt to mitigate is noise that is contaminating the 

EEG signal. This noise can reduce the performance of classification models that are 

attempting to read the EEG recordings. As a result, noise reduction methods are 

employed to filter out unwanted noise while maintaining the integrity and information 

of the underlying signal.  

One paper utilizes an approach called LAPPS (Least Absolute LP (0<p<1) 

Penalized Solution) (Bore et al., 2020). LAPPS is a specific type of granger analysis 

(GA), which tries to capture the causal relationship within a time series. This method 

is based on multiple variant auto-regression (MVAR). The paper used artificial noise 

generation to simulate more data for training and testing of the model. The steps were 

as follows: (1) Generate the 8-time series using the GCCA toolbox. (2) Contaminate 

the time series to model variations of noise. (3) Use different methods including LAPPS 

to estimate MVAR parameters and network parameters, followed by computing the 

MVAR bias. Compared to other methods of noise reduction tested in this study, LAPPS 

performed the best.  

A study utilizing deep CNNs to classify epileptic states in EEGs notes in the 

paper that EEGs are notorious for having low signal-to-noise ratios. For this study, a 

wavelet threshold denoising method was utilized. The Daubechies wavelet of order 6 

was chosen as the mother wavelet for discrete wavelet transformation or DWT (Gao et 

al., 2020.)  

Another paper argues that noise contamination of the EEG reading is the 

number one reason for mediocre performance, which reiterates the importance of 

employing noise reduction techniques prior to training classification models (Klepl et 

al., 2022). In this paper, simpler filtering techniques were used to reduce noise. One 

technique used was a zero-phase 5th order Butterworth filter. This was used to remove 

frequencies below 0.1 Hz and above 100 Hz. Another filter used was a zero-phase 4th 

order Butterworth stop-band filter. This filter removed the 49-51 Hz range. The paper 

also noted that the data was sampled down to 250 Hz by employing an 8th order 

Chebyshev type I filter. Similar simpler noise reduction techniques such as band-pass 

filters have been employed in other papers (Xu et al., 2019). 
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It is also important to note that certain parameters of the neural network can 

impact the model’s sensitivity to noise. For example, LeakyReLU can be utilized over 

other activation functions to add robustness to noise (Acharya et al., 2018). 

 

 

 

 

2.3 CNN In Seizure and Neurodegenerative Research 

CNNs represent a type of neural network that makes use of convolution layers, 

pooling layers, and a fully connected layer all combined. The research done by (Abiyev 

et al., 2020) focuses specifically on the application of CNNs towards identifying seizure 

events in patients suspected to have lesions that need to be operated on. Their model 

utilized four convolutional layers, global average pooling, and a fully connected layer. 

This was all in combination with the RMSprop algorithm, specifically for addressing 

slow convergence. After training the CNN model, a comparative analysis was done 

using an SVM and NN model. The CNN model achieved a 96.67% accuracy rate, 

outperforming both models by ~21%. 

Taking a step back to see how CNNs perform on a high level of brain activity 

classification, a team at the University of Missouri gave CNNs the task of classifying 

brain waves. As mentioned above, most CNNs are used to view an EEG as an image 

that will be classified as a specific event. These can be filled with noise making it 

difficult to interpret the results. Swapnil Joshi and their team set out to make sense of 

noisy readings using CNNs to interpret brain waves using LFP recordings (cortical 

tissue recordings of brain signals). These outperformed EEG recordings in the presence 

of pink noise and had better spatial and temporal resolution, reaching accuracy levels 

around 80% (Joshi et al., 2019). In addition, their team was able to identify unique brain 

waves with accuracies ranging from 76% to 90%.  

The work performed by (Lawhern et al., 2018) applied CNNs in a slightly 

different approach. Brain computer interfaces or BCI’s allow for the ‘filtering’ of EEG 

information into single categories of interface. Meaning certain events like vision-

evoked potentials can be captured and identified by a BCI. In this work the team works 

to develop a CNN that can be applied to multiple different BCI’s at once with limited 

training data. This is a large step forward in the EEG space. This shows that a CNN can 

be applied well even with limited training data. While there is no shortage of EEG data, 

the means for gathering it could soon be simplified with at-home monitoring.  

Work performed on emotion recognition by (Wang et al., 2021) shows how a 

CNN, in their case FLDNet, can be used to filter out frames of an EEG based on a 
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classification of ‘normal’ and ‘abnormal’. By classifying chunks of recordings as 

normal the performance and accuracy of the model can be increased. This would be a 

good first step in building a model by first classifying chunks of data. The chunks could 

be further refined to increase accuracy.  

Most of the work performed when pairing deep learning and EEG recordings 

is focused either towards classifying events in a healthy brain (emotions, motor 

function, sleep states, etc.) or in identifying specific ailments like seizures or 

Alzheimer's. In work by Shu Oh and team, CNNs were applied to identifying 

Parkinson's disease in patients. Parkinson’s is of special concern to this paper since it 

is a disease that is marked with a slow degradation of the brain. In the Shu Oh study, 

twenty patients with PD and twenty healthy patients were observed. The CNN applied 

was able to reach an accuracy of 88.25%, a sensitivity of 84.71% and a specificity of 

91.77% (Oh et al., 2020). The team accomplished this by using stratified tenfold cross-

validation, Relu, softmax and Adam optimization. Each EEG recording lasted 5 

minutes with the subjects moving as little as possible. These recordings were then 

broken into 1588 artifact-free epochs. The parameters for the CNN were tuned 

specifically for this group of people meaning it may be possible the model was 

overfitted on the data.  

All these forms of research show how accurate CNNs can be with a large 

basket of mental illnesses, making it an ideal candidate to apply to the problem of 

identifying problematic EEGs of patients that may or may not have ALS. 

2.4 ALS and the Collection of ALS EEG recordings 

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that 

causes muscular paralysis. The disorder affects both the upper and lower motor 

neurons, and it also begins to impair the ability to communicate when progressing to 

the advanced stages. While in the advanced stages, ALS is known as Locked-In 

Syndrome (LIS). In this state, the patient maintains cognitive function with little motor 

function. This includes conscious movement of the eyes.  

One research paper documents the collection of EEGs and eye-tracking (ET) 

recordings from six ALS patients and 170 healthy patients (Le et al., 2024). The EEG 

recordings were obtained using a 32-electrode Emotive EPOC Flex device. The design 

of the experiment entailed nine different scenarios for each participant. Each scenario 

incorporated different tasks such as motor imagery, physical movements, and 

communication using the eye-tracking system. As for the methodology, rigorous 

calibration and quality control measures were employed to increase data accuracy. 

Preprocessing steps were taken by the users of the device to maintain the integrity of 

the raw data. The data was recorded over many sessions in the homes of the ALS 

patients. The data for the healthy patient was collected all at once in a laboratory setting. 

The goal of the paper was to present the dataset (EEGET-ALS) for use cases such as 

improving brain-computer interfaces (BCIs), study of motor cortex function, and the 

monitoring of motor impairment in ALS patients.  
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Preliminary experiments utilizing this dataset in tasks such as attention 

determination and person identification have reached accuracies of about 80% in 

certain cases. The dataset also contains detailed annotations and recording protocols, 

which make it a good resource for developing machine learning models such as 

convolutional neural networks. 

3   Methods 

3.1 Data 

The data was sourced from the following resource: 

https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml. This dataset was 

modified to conform with HIPAA Privacy Rules by removing personal identifiers to 

make the data anonymous. 

This corpus represents the largest known collection of EEG data collected and 

was brought together by the efforts of physicians and professors at Temple University 

Hospital and Temple University in Philadelphia, Pennsylvania. The data contains 

26,846 clinical EEG recordings collected between 2002-2017. 

The number of patients covered by the recordings is 14,987, with each patient 

averaging 1.79 sessions. 95% of the data is collected using the international 10-20 setup 

of electrodes on patients. 

 

Fig. 3. The above diagram represents the international 10-20 setup. Each labelled circle 

represents a location where an electrode will be placed to measure brain activity. Even numbers 

denote the right hemisphere of the brain while odd numbers denote the left.  

28 different independent variables are present in the dataset. 16 of these 

represent the 16 electrodes present in the international 10-20 setup. The remaining 12 
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of these are metadata that could or could not have been collected at the time of the 

recording including EKG recordings, photic stimuli, markers for specific types of infant 

brain activity, and extra electrodes placed along the scalp. Recordings are measured as 

voltage changes over time at each electrode. This results in a waveform as seen in figure 

4. 

Fig. 4 A recording of a brainwave on the FP1 receptor. This is classified as normal brain 

activity. The recording represents voltage over time where voltage directly translates to the 

measured changes in voltage within the brain. 

 

Fig. 5 Fast Fourier transform of a recording of a brainwave on the FP1 receptor. This 

is a translation of fig. 1 from the time domain into the frequency domain. Representing one of 

the constituent waveforms of the wave in fig. 1.  

 

The signal variables in the data were run separately in a time domain as input 

to the model and as a frequency domain as input to the model. The time domain allowed 

for a benchmark of performance on the model. Converting the data into the frequency 

domain allowed for filtering and deeper analysis. 

Fast Fourier transform (FFT) takes the waveform in the time domain and 

breaks it down into its constituent waveforms in the frequency domain. This means that 

all the building blocks of the wave in the time dimension are exposed. This enabled 

further analysis of what behaviors stand out among samples. Noise in a figure would 

suddenly gain distinct features that the model can be trained on.  

The EEG recordings were converted from their native form (figure 2) into a 

spectrogram using FFT. FFT creates a spectrogram, a photographic representation of 

the constituent waveforms of the signals. This transforms the data into a form that can 

be fed into a CNN. From there the data was normalized using either a moving average 

or a form of local scaling. A lot of care needed to be taken to make sure seizure events 

were not “normalized” out of the data. Neurodegenerative events will naturally be 

“outliers”. Finally, the image data was converted into a grayscale image to further 

improve model performance (figure 4). 
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Fig. 6 Examples of a spectrogram and its greyscale conversion 

 Data from the study performed by Le and associates on ALS eye tracking was 

converted in the same way as the data from the TUH corpus. Once the model had been 

trained on the TUH corpus it was then transferred to the ALS dataset 

3.2 Solutions Approach 

This VGG19 model was trained on the TUH corpus. After tuning the model, 

the weights were frozen and transferred over to the ALS dataset. The major metrics that 

were focused on were accuracy and sensitivity. Specificity was not a primary focus of 

this model since false positives hold much lower risks when diagnosing a disease 

compared to the potential impact of a false negative. This accuracy was based on cross 

validation. Since this was a large dataset, only 5 folds were used when performing cross 

validation.  

3.3 Implementation of the VGG19 Architecture 
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 CNNs perform well on image data if the training datasets are large enough. In 

this case there was not a substantial number of images to train for both the TUH corpus 

and the ALS data. This issue led to the selection of the VGG19 algorithm so that 

previous image learning can be leveraged and transferred.  

 For this work the signals were averaged down from 27 to 3 so that data could 

be compressed and could better fit with the VGG19 architecture. From there, custom 

convolutional layers, dense layers, and dropout layers were added to further increase 

learning. Three convolutional layers were adjusted to have 32, 64, and 128 filters with 

each filter having a size of 3x3 and a ‘relu’ activation function. For each convolutional 

layer, batch normalizing was also used on the output of that layer to help speed up the 

training process. Next, the max pooling layers were adjusted to have a 2x2 filter. This 

helped simplify the input and aided the model in extracting the strongest features. 

Finally, two dense layers were applied: a layer with 128 neurons and a layer with 1 

neuron. The final dense layer allowed the model to output either a 1 or 0. 

Noise was a challenge with the EEG data. This caused the VGG19 model to 

have lower accuracy than expected. In order to overcome this, L1 and L2 regularization 

were implemented to help filter the data further. L1 and L2 regularization allowed for 

the generalization of the data, which helped improve accuracy when transferring the 

model to the ALS dataset. For the TUH corpus data there was an increase of roughly 3-

5%, whereas for the ALS dataset, there was an increase of 1-2%.  

4   ResultsThe performance of the VGG19 algorithm was evaluated using 

both training datasets: the EEG corpus from Temple University Hospital and the ALS 

dataset taken from the ALS eye tracking study. The results are summarized in Table 1. 

There was a noticeable decrease in the performance of the model on the ALS dataset, 

which was expected considering the small size of the dataset. 

 

 

As seen above the precision indicates that our VGG19 model could achieve a 

rate of 62% positive prediction rate for the ALS dataset. Further iterations will seek to 

increase this value. As seen below in Table 2, the cross-validation results indicate that 

our VGG19 model achieved a mean accuracy of 80% with a standard deviation of 2.5% 
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on the general data and a mean accuracy of 68% with a standard deviation of 3.7%. 

Giving an accurate score to the application of VGG19 towards a small dataset of 

different neurological disorders. 

 

5   Discussion 

These results show that VGG19 can reasonably identify EEGs with ALS vs 

EEGs of normal recordings. This means that the transfer learning was a success in 

providing evidence that a model trained on more generic neurological disease data is a 

viable option when applied to more specific applications like ALS. Further research 

can expand on this by increasing public EEG data availability for ALS. From there, the 

accuracy can be improved to train a model with accuracies closer to a range of 80-90%. 

This can also be applied to feature extraction when the available ALS dataset has 

increased. The features identified using this model can be used to identify those 

waveforms that uniquely apply to ALS.  

Caution should always be taken when using any model for diagnosis. 

Mislabeling a diagnosis can be dangerous for both the patient and the physician. Real 

world implementation of an algorithm such as this should not be taken lightly and 

should be met with strict testing and usage guidelines. 

In the course of developing this model, it was interesting to see the 

improvements due to filtering and the final accuracy obtained. With such a small 

dataset, especially for a CNN, reaching reasonable levels of accuracy is difficult. Even 

the data itself was difficult to obtain. The concern for medical privacy is a valid one, 

but it makes public research challenging; however, the pursuit of research should not 

cost patients their anonymity. While the results are enlightening, personal data like this 

should always be handled with care to make sure the correct information is anonymized 

to protect people's privacy. 

6   Conclusion 

This study sought to explore the application of VGG19 towards the diagnosis 

of ALS. The study successfully demonstrated that transfer learning using VGG19 and 

a large corpus of EEG training data is a viable method in identifying EEG recordings 

related to ALS. The model achieved an accuracy of 80% on the larger dataset and 68% 

on the ALS dataset. This finding suggests that the VGG19 algorithm is effective in 

transferring its learning to ALS even in the presence of sparse data. This study also 
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shows that VGG19 can noticeably improve the ability of clinicians to identify EEGs 

with evidence of neurological diseases. 

The study was limited by the small amount of data available for ALS. CNNs 

require large amounts of data in order to effectively classify images. Even in the 

presence of sparse data, the model was still able to perform well but could see higher 

performance given more data to train on. For future research, it would be valuable to 

seek out more data on ALS and incorporate more data on abstract EEG recordings.  

This study highlighted the potential of CNNs to help diagnose ALS in a non-

invasive cost-effective way for patients. By improving diagnostic methods, and the 

features associated with certain diseases, healthcare can move closer towards a cure for 

difficult diseases. 
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