Book-And-Claim System For Sustainable Aviation Fuels

Christine Kranich

Author(s) ORCID Identifier:
0009-0007-8766-086X

Sarah J. Haas

Author(s) ORCID Identifier:
0009-0007-8766-086X

Recommended Citation
Christine Kranich et al., Book-And-Claim System For Sustainable Aviation Fuels, 89 J. AIR L. & COM. 111 (2024)

This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.
BOOK-AND-CLAIM SYSTEM FOR SUSTAINABLE AVIATION FUELS

Christine Kranich* and Sarah Joanna Haas**

ABSTRACT

This Article provides an overview of the regulatory (legal) framework in which the decarbonisation of aviation is embedded, with a focus on European law. The Article further provides updates on EU-ETS, CORISA, RED III and the minimum quota of SAF supply in accordance with Refuel EU Aviation up to October 2023. Sustainable Aviation Fuels (SAF) will be described in detail in this Article, and it is further explained that the use of SAF could significantly contribute to aviation becoming “greener”. As the availability of SAF is still rather scarce, the Article revolves around a mechanism of a global book-and-claim system to unify and scale up production and use. The general concept of book-and-claim as well as the specific one in relation to SAF is explained in the Article. Further, examples of existing book-and-claim systems are given, and the Article concludes with the benefits of a European book-and-claim system for SAF for the various stakeholders in the aviation industry.

DOI: https://doi.org/10.25172/jalc.89.1.5

* Christine Kranich is a German Lawyer and Equity Partner at ARNECKE SIBETH DABELSTEIN. She is admitted to the German Bar since 1999 and as Attorney and Counselor at Law to the Bar of California since 2001 (inactive). Representing and advising airlines, lessors, banks, insurances, MROs, manufacturers, and other companies in aviation matters (scheduled and charter flights as well as business aviation) in national and international transactions (including VAT issues) as well as registration/deregistration of aircraft and mortgages thereon in Germany and the International Registry. She is member at the DAJV (German-American Lawyer Union) and the Aviation Initiative for Renewable Energy in Germany e.V.

** Sarah J. Haas is a German Lawyer and Senior Associate at ARNECKE SIBETH DABELSTEIN. She is admitted to the German Bar since 2016 and the Austrian Bar since 2022. She is representing and advising airlines in litigation matters, administrative offence proceedings and regulatory issues, and consulting on tax and environmental matters. She is a member in the DNJV (German-Nordic Lawyers Association) and the Aviation Initiative for Renewable Energy in Germany e.V.
Table of Contents

I. Introduction ... 113

II. Regulatory Overview 113

A. Paris Agreement .. 113

B. European Green Deal 115
 1. “Fit for 55” ... 115

C. EU-ETS .. 117
 1. Overview .. 117
 2. Aviation .. 117

D. CORSIA .. 121

III. Sustainable Aviation Fuel (S) (“SAF”) 125

A. SAF Definition .. 125

B. Examples of Current SAF 129
 1. Fairs .. 129
 2. INERATEC .. 129
 3. Neste ... 130
 4. Montana Renewables LLC 130
 5. LanzaTech/LanzaJet 132

C. Regulatory Incentives by States/Regions to Increase SAF Supply and Use 133
 1. SAF Grand Challenge (USA) 133
 2. UK .. 135
 3. Singapore ... 135
 4. EU .. 136

D. Other SAF Benefits 142
 1. Assist Developing Nations 142
 2. Reduction of NOx 143

E. The Need to Further Increase Production and Uptake of SAF ... 144

IV. Book-And-Claim 145

A. Scaling Up SAF Production by Use of Book-And-Claim ... 145

B. General Description of Book-And-Claim System ... 146

C. SAF Book-And-Claim 147

D. Market Overview of Existing Book-And-Claim Systems ... 152
 1. Roundtable on Sustainable Biomaterials (RSB) ... 152
 2. International Sustainability and Carbon Certification (“ISCC”) 154

V. Conclusion .. 154
I. INTRODUCTION

We first provide in this Article an overview of the regulatory framework in which the decarbonisation or better defossilisation of aviation is embedded, with a focus on European law. Whether those ambitious, but necessary, targets set by the Paris Agreement and European Climate Law will be met, depends largely, at least in the coming years, on the upscaling of production and use of Sustainable Aviation Fuels (SAF). Such SAF will be described in this Article in order to emphasise that it has nothing to do with “greenwashing” but the use of SAF could significantly contribute to aviation becoming much “greener”. However, the availability of SAF is still rather scarce. Therefore, means need to be found to scale up production and use. One mechanism would be the establishment of a book-and-claim system on a European authority level. The concept of book-and-claim is explained herein, examples of existing book-and-claim systems are given and an outlook on the favoured European book-and-claim system is provided at the end of this Article.

II. REGULATORY OVERVIEW

A. Paris Agreement

In order to combat climate change, the Paris Agreement\(^1\) was adopted by 196 Parties\(^2\) at the United Nations (UN) Climate Conference in Paris (COP 21\(^3\)) on December 12, 2015, and entered into force on November 4, 2016.\(^4\) It is a legally binding international treaty on climate change.\(^5\) The agreement covers climate

\(^1\) Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T.I.A.S. No. 16-1104. The full agreement can be found here: https://unfccc.int/sites/default/files/english_paris_agreement.pdf. The United Nations Framework Convention on Climate Change (UNFCCC) is an international environmental agreement with the aim of preventing dangerous anthropogenic interference with the climate system and slowing down global warming and mitigating its consequences. Id. at art. 2.

\(^3\) UN Climate Change Conferences, Climate action, United Nations, https://www.un.org/en/climatechange/un-climate-conferences (last accessed January 23, 2024) The first COP meeting was held in Berlin, Germany in 1995. Id.

\(^5\) See id.
change, mitigation, adaptation and finance. It contains three key elements. The first one is to limit global warming to well below 2, preferably to 1.5 degrees Celsius, compared to pre-industrial levels (1850-1900). The second is to review the countries’ commitments to cutting emissions every five years. The third key element is to provide climate finance to developing countries. It also included a widely acknowledged net zero global greenhouse gas (GHG) emissions aim for the second half of the 21st century.

“By 2020, countries had to submit their plans for climate action known as nationally determined contributions (NDCs).” “In their NDCs, the countries communicate actions they will take to reduce their GHG emissions in order to reach the goals of the Paris Agreement.” To better frame the efforts towards the long-term goal, the Paris Agreement also invited countries to formulate and submit by 2020 long-term low GHG emission development strategies (LT-LEDS). Unlike NDCs, they are not mandatory. “Nevertheless, they place the NDCs into the context of the countries’ long-term planning and development priorities.”

On October 7, 2022, at COP 27 in Egypt, the International Civil Aviation Organization (ICAO) announced its Long-Term Aspirational Goal (LTAG) at its event on green innovation in aviation. Following the creation of the International Aviation

6 See id.
7 Or 3.6 degrees Fahrenheit respectively 2.7 degrees Fahrenheit. Id.
9 The Paris Agreement, supra note 4.
have%20been,compared%20to%20the%20previous%20version.
12 The Paris Agreement, supra note 4.
13 Id.
14 Id.
15 The Paris Agreement, UNFCCC, https://unfccc.int/process-and-meetings/the-paris-agreement#:~:text=Since%202020%2C%20countries%20
have%20been,compared%20to%20the%20previous%20version (last visited Jan. 17, 2024).
Climate Ambition Coalition at COP 26, the LTAG will guide the aviation industry towards reaching net-zero in carbon emissions by 2050 in order to support and comply with the aims of the Paris Agreement.18

B. European Green Deal

In line with the Paris Agreement, the European Commission (EC) concluded that the European Union (EU) needs to increase its ambition for the coming decade and update its climate and energy policy framework. Therefore, the EC announced on December 11, 2019 the European Green Deal (EGD), which sets the goal of making Europe the first climate-neutral continent by 2050.19 It also sets the intermediate target of “reducing net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels.”20 This objective has been communicated to the UNFCCC21 and became binding law on July 29, 2021 under Regulation (EU) 2021/111922 for the Member States (also known as European Climate Law).

1. “Fit for 55”

In order to deliver on these aims, the EC presented on July 14, 2021, thirteen policy measures to make the EU’s climate, energy, land use, transport and taxation policies fit for reducing net GHG emissions (so called Fit for 55)23, which included several proposals for new or amended regulations and directives. The package includes a program called “Destination 2050”, a Sustainability Roadmap for the aviation industry in the EU.24 Whereas EU Regulations are directly binding law in each Member State, directives need to be first implemented into national law before becoming effective and, depending on the wording of the respective directive, the national implementation laws of the Member

18 See id.

20 See id.

21 Id.

22 2021 O.J. (L 243) 1.

23 Fit for 55, European Council, https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ (last visited Jan. 23, 2023). The package refers to the aim of the European Union, to reduce CO\textsubscript{2} emissions by at least 55% until 2030. Id. The EU Member States are working on new legislation to achieve the 2030-goal and make the EU climate neutral by 2050. Id.

24 A Route to Net Zero European Aviation, Royal Netherlands Aerospace Centre and SEO Amsterdam Economics (Feb. 2021), www.destination2050.eu.
States could deviate from each other. The Fit for 55 package, that combines different measures, is criticised for creating a risk of carbon leakage and a competitive distortion between EU and non-EU airlines.

A subsection of the Fit for 55 package is the “Proposal for a review of the Renewable Energy Directive,” which was introduced by the EC. On September 12, 2023, the European Parliament voted on the amended Renewable Energy Directive (RED III). Thus, at this stage, only the Council has to formally approve RED III. Within 20 days after the new text has been published in the Official Journal of the EU, the new Directive would enter into force. Thereafter, the EU member states have 18 months to transpose the amended Directive into national law. With the Parliament’s approval of the amended Renewable Energy Directive, the EU has taken another step towards a simpler and faster expansion of renewable energies in Europe. In addition, RED III increased the share of renewables in final energy consumption to 42.5% by 2030, whereby the target is even 45%, in order to achieve the climate targets and it sent an important signal both to the industry and to the international community in the run-up to COP 28. According to Art. 25 of this Directive, each Member State shall set an obligation on fuel suppliers to ensure that the amount of the renewable fuels and renewable electricity supplied to the transport sector leads to a GHG intensity reduction of at least a certain percentage by 2030, compared to the baseline.

27 2018 O.J. (L 328) 1.

29 Id. at 10.

30 Id.

31 Id.

34 Id. at 6.
Such percentage was 13% according to RED II and has been increased to 14.5% in the transport sector according to RED III.\(^{35}\)

C. EU-ETS

1. Overview

The European Union Emissions Trading System (EU-ETS) was the first large GHG emission-trading scheme in the world.\(^{36}\) It was launched in 2005 to fight global warming and is a major pillar in the EU energy policy as outlined in Directive 2003/87/EC.\(^{37}\) The EU-ETS sets an EU-wide cap\(^{38}\) on the total amount of GHG emissions from energy-intensive sectors including power stations and industrial plants.\(^{39}\) The cap decreases over time in order to reduce overall emissions.\(^{40}\) Companies receive free allowances but have to purchase additional allowances/certificates if they have more emissions than those covered by the free allowances.\(^{41}\) Thus, companies trade emissions allowances, each allowance allows the respective company to emit one tonne of CO\(_2\).\(^{42}\) These allowances have to be surrendered to the governing body of the scheme.\(^{43}\)

2. Aviation

CO\(_2\) emissions from commercial and non-commercial aviation have been included in the EU-ETS since 2012\(^{44}\) based on Directive

\(^{35}\) Id. at 10.

\(^{39}\) The cap on allowances was set through NAPs at the national level. See National allocation plans, supra note 38.

\(^{40}\) In “Phase 4” of the EU ETS (2021-2030), the cap on emissions continues to decrease annually at an increased annual linear reduction factor of 2.2%. See Emissions cap and allowances, supra note 38.

\(^{41}\) See id.

\(^{42}\) Or the equivalent amount of other powerful greenhouse gases, nitrous oxide (N\(_2\)O) and perfluorocarbons (PFCs). Emissions cap and allowances, supra note 38.

\(^{43}\) See id.

\(^{44}\) Since “Phase 3”. Emissions cap and allowances, supra note 38.
2008/101/EC. This means airlines flying within (but not to or from) the European Economic Area have been required to monitor, report and verify their emissions and to surrender allowances against those emissions. Three pillars determine the aviation cap: The allowances for aviation that are provided free of charge sum up to 82%, 3% contain a special reserve of new entrants and 15% are auctioned. However, that will change (see further down below). Auctioning allowances follows the principle that the polluter shall pay in accordance with the ETS Directive and the Auctioning Regulation. In numbers this means approximately 31.1 million allowances were being issued for aircraft operators in 2020, and 7.5 million aviation allowances were auctioned. From 2021 on, the quantity of allowances decreased by the linear factor of 2.2 %.

Free allowances were allocated to around 500 airlines from 2012 to 2020, each airline received 0.6422 allowances per 1,000 tonne-kilometres that were flown.

The three EEA-EFTA countries auction their allowances within the same scheme. In the United Kingdom (UK), the UK Emissions Trading Scheme (UK-ETS) replaced the EU-ETS after the BREXIT. The obligations for UK aircraft operators are set out

46 European Economic Area (EEA) i.e. the EU Member States plus Norway, Liechtenstein and Iceland. Countries in the EU and EEA, United Kingdom, https://www.gov.uk/eu-eea#:~:text=The%20European%20Economic%20Area%20EEA,part%20of%20the%20single%20market (last visited Jan. 19, 2024).
49 2010 O.J. (L 302) 1.
50 2020 O.J. (C 428 I) 2.
51 2020 O.J., supra note 50.
in the “The Greenhouse Gas Emissions Trading Scheme Order 2020 No.1265”55

Emissions from flights to or from the EEA with an origin or destination outside the EEA are currently not included in the EU-ETS.56 The original plan was for these emissions to be included in the scheme as well.57 Such plans were put on hold (“stop the clock”) as much opposition was raised back then from countries like the USA and China.58 Moreover, the EU decided to support the development of a global mechanism, which resulted in the Carbon Offsetting and Reduction Scheme for International Aviation “CORSIA”, (see section 0 below).59 However, stakeholders of EU network carriers and those servicing third countries criticize an unfair disadvantage compared to non-EU carriers on these routes.60 European Airlines argue that the EU-ETS, already puts a price on aviation emissions and that the planned revision of the Energy Tax Directive leads to double taxation.61 The “stop the clock” suspension shall end on 31 December 2023.62

On December 6, 2022 the Council of the European Union (the Council) and the European Parliament (EP) reached a provisional

56 The ETS Directive generally applies to all flights which arrive at or depart from an aerodrome situated in the territory of a Member State to which the Treaty applies. 2023 O.J. (L 130) 115. But it also provides for a derogation as regards “flights to and from aerodromes located in States outside the EEA.” 2023 O.J. (L 130) 129.

61 Id.

agreement on the revision of the EU-ETS rules on aviation. The EP adopted the agreed text during its plenary session on April 18, 2023. The Council adopted it on April 25, 2023, it was published in the Official Journal of the EU on May 16, 2023 and entered into force on June 5, 2023. The Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with this amended Directive by 31 December 2023. Such amended Directive includes, \textit{inter alia}, the following:

\begin{itemize}
 \item \textbf{a)} Flights within the EEA continue to be covered by the EU-ETS, as well as flights to Switzerland and the UK.
 \item \textbf{b)} The total number of aviation allowances in the EU-ETS will be capped at the level of issued certificates in 2023.
 \item \textbf{c)} In addition, the number of free allowances allocated to aircraft operators will be reduced progressively, so that operators need to buy more allowances each year, i.e. a percentage of 25\% in 2024, 50\% in 2025 and from 2026 onwards, all aviation allowances shall be auctioned, thus need to be purchased by the aircraft operators.
\end{itemize}

“As of February 2023, the price of carbon in EU-ETS has exceeded EUR 100.00 per metric ton of CO$_2$, whereas a few years ago, the price was around only EUR 10.00 per ton.” Due to full auctioning in 2026, it is expected that the costs for CO$_2$ certificates/allowances will increase for airlines up to EUR 140.00 per ton. According to the Annex of Directive (EU) 2023/958, the obligations apply to aircraft operators that hold an air operator certificate issued by a Member State or are registered in a Member State and produce annual CO$_2$ emissions greater than 10,000 tonnes from the use of aircraft with a maximum certified take-off mass greater than 5,700 kg conducting flights covered by this Annex, other than (i) those flights departing and arriving in the same Member State and (ii) those that are state flights or flights for any of the following missions: humanitarian, medical,

\begin{itemize}
 \item 64 \textit{Id.}
 \item 65 \textit{Id.} at 3.
 \item 66 \textit{2023 O.J. (L 130) 122.}
 \item 67 \textit{2023 O.J. (L130) 124.}
\end{itemize}
military, firefighting or ferry flights enabling one of those missions at the beginning and at the end.70

D. CORSIA

At the meeting of the ICAO in 2016, 192 countries agreed to a Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).71 The Decision 377/2013/EU72 adopted by the EU in 2012 paved the way for the decision by the 38th ICAO Assembly to work on the development of a global marked-based mechanism.73 This resulted into the agreement on CORSIA at the 39th ICAO Assembly.74

CORSIA is a global scheme for offsetting CO\textsubscript{2} emissions from international aviation.75 Carbon offsetting is the process of purchasing carbon credits to ‘offset’ carbon emissions, resulting in net-zero emissions.76 Offsetting can be done at an individual level (e.g. offsetting emissions from personal air travel) or by businesses and industries.77 Countries/regions may also engage in offsetting to meet their climate goals under the Paris Agreement/European Climate Law (see under 104. above).78

The global market-based measure of CORSIA shall ensure global uniformity rather than having several different carbon offsetting schemes around the globe, which may not be comparable and could lead to competition issues.79

CORSIA is implemented in three phases, starting with a pilot phase from 2021 to 2023, followed by the first phase from 2024 to 2026 and a second phase from 2027 onwards.80

CORSIA is a global market-based ‘baseline-and-credit’ mechanism.81 ICAO’s medium-term goal of Carbon Neutral

\begin{itemize}
\item 70 2023 O.J. (L 130) Annex.
\item 71 \textit{Offsetting CO2 Emissions with CORSIA, supra} note 59.
\item 72 2013 O.J. (L 113) 1.
\item 73 \textit{Aviation’s Contribution to European Union Climate Action, supra} note 58.
\item 74 Id.
\item 75 \textit{Offsetting CO2 Emissions with CORSIA, supra} note 59.
\item 76 Will Kenton, \textit{Carbon Credits and How They Can Offset Your Carbon Footprint}, Investopedia (Dec. 17, 2023), https://www.investopedia.com/terms/c/carbon_credit.asp.
\item 77 Id.
\item 78 Id.
\item 79 See \textit{Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)}, ICAO, https://www.icao.int/environmental-protection/CORSIA/Pages/default.aspx (last visited April 2, 2023).
\item 80 CORSIA States for Chapter 3 State Pairs, ICAO, https://www.icao.int/environmental-protection/CORSIA/Pages/state-pairs.aspx (last visited Jan. 21, 2014).
\item 81 CORSIA, \textit{supra} note 79.
\end{itemize}
Growth from 2020 contained the CORSIA requirement that all participant countries monitored their baseline emissions in 2019 and 2020.\(^{82}\) Now, the emissions in 2019 function as a baseline for 2021 and 2023, and only 85% of the 2019 emissions shall be the baseline for each year onwards from 2024, which are estimated to be around 439 million tons.\(^{83}\) ICAO members participating in CORSIA will need to ensure that aircraft operators comply with CORSIA offsetting requirements every three years.\(^{84}\) "The Monitoring, Reporting and Verification (MRV) requirements relating to the CO\(_2\) emissions from international flights have already applied since January 1, 2019."\(^{85}\) The MRV requirements however have to be distinguished from the offsetting requirements that apply since January 1, 2021.\(^{86}\)

An airline may reduce its carbon offsetting requirements by using CORSIA eligible fuels (see more specifics further down below and under III 3. e) below).\(^{87}\) Any remaining CO\(_2\) offsetting requirements for the compliance period must be purchased as emission units through carbon markets and recorded within a central CORSIA registry (similar to EU-ETS).\(^{88}\)

Currently (in 2023)\(^{89}\) 125 states\(^{90}\) are participating in CORSIA. It is anticipated that CORSIA will mitigate (i.e. offset) around 2.5 billion tonnes of CO\(_2\) between 2021 and 2035, which means

84 CORSIA Fact Sheet, supra note 83.

86 Id.

90 Status of July 2023, the status is updated under the link. CORSIA States for Chapter 3 State Pairs, ICAO, https://www.icao.int/environmental-protection/CORSIA/Pages/state-pairs.aspx (last visited September 10, 2023).
an annual average of 164 million tonnes of CO₂. Unfortunately, China, the second biggest global source of passenger aviation emissions, is currently not participating despite being an early supporter of CORSIA. Russia and India have also not yet volunteered for the scheme. The International Air Transport Association (IATA) forecasts suggest that China will be the world’s largest aviation market as early as this year, and India, the current fastest growing aviation market, will be the third largest by 2025. However, during the “second phase” (2027-2035), participation will no longer be voluntary for states, and large aviation markets such as Brazil, China and India have to participate, expanding the requirements for offsets at the latest by this time.

The EU member states committed to participate in the pilot phase, which began in January 2021. On December 19, 2022, the Council of the EU adopted a decision on CORSIA, which enables the member states to fulfill their first annual obligation to notify operators based in the EU of their CORSIA requirements. Other CORSIA obligations are implemented in “EU law” through the revision of the “EU-ETS Directive” (as mentioned above), which needs to be transposed into the national law of the member states. CORSIA applies to flights outside the EU-ETS scope and depart or arrive in countries that apply CORSIA. Emissions from these flights will be offset once collective international emissions exceed 2019 levels, respectively 85% of 2019

91 Fact Sheet: CORSIA, IATA 1, https://www.iata.org/contentassets/ed476ad1a80f4ec7949204e0d9e34a71/corsia-fact-sheet.pdf (last visited Jan. 21, 2024).
96 Council Adopts Decision on Offsetting Requirements for Air Transport Emissions (CORSIA), supra note 48.
97 Id.
98 Id.
levels (as described above).100 The eligible offset units must originate from countries participating in the Paris Agreement and CORSIA.101 “Offsets must be reliably accounted for in order to avoid them being counted twice.102 To avoid market distortions, the EC will maintain the route-based approach, ensuring that airlines operating flights on the same routes are treated equally, regardless of nationality.”103

Aircraft operators are allowed to reduce their offsetting requirements through the use of “CORSIA eligible fuels.”104 The Implementation Element “CORSIA eligible fuels” is reflected in five ICAO documents105 referenced in Annex 16, Volume IV106 (see further explanation on CORSIA eligible fuels below).

100 CORSIA Fact Sheet, supra note 83.
102 Id.
103 Id.
104 CORSIA eligible fuels “include CORSIA sustainable aviation fuels and CORSIA lower carbon aviation fuels.” CORSIA Eligible Fuels, ICAO, https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-Eligible-Fuels.aspx (last visited Feb. 8, 2023).
According to the new Directive (EU) 2023/958, EU-ETS regulations for aviation apply for intra-European flights (including flights to and from the United Kingdom and Switzerland), while from 2022 to 2027, CORSIA applies to extra-European flights to and from third countries participating in CORSIA (‘clean cut’). “When global aviation emissions under CORSIA reach levels above 85% of 2019-levels, European airlines will have to offset their proportionate share with corresponding carbon credits, invested in emissions reductions in countries participating in CORSIA offsetting.” In 2025, the EC will assess whether the implementation of CORSIA is sufficient to reduce aviation emissions in light of the objective of the Paris Agreement. If CORSIA delivers on its objectives, the EC will make a proposal to the Council and Parliament to extend the clean cut. If CORSIA is not sufficient, the EC will make a proposal to extend the scope of EU-ETS to all flights departing from the EEA.

III. SUSTAINABLE AVIATION FUEL(S) ("SAF")

It has become common knowledge that the use of SAF is currently the main driver of complying with the above-named targets in the field of aviation. Experts estimate that the contribution of SAF to the emissions reductions needed by the aviation industry until 2050 could reach 65%. However, as of today, only about 1% of the jet fuel produced is accounted to be SAF.

A. SAF Definition

As IATA defines that “SAF is the main term used by the aviation industry to describe a non-conventional (not fossil derived)

107 2023 O.J. (L 130) 115.
109 Id.
110 Id.
111 Id.
112 Id.
113 The year 2050 is the date for achieving “net-zero” CO₂ emissions under the Paris Agreement. Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T.I.A.S. No. 16-1104.
aviation fuel.” “SAF is the preferred IATA term for this type of fuel although when other terms such as sustainable alternative fuel, sustainable alternative jet fuel, renewable jet fuel or bio jet fuel are used, in general, the same intent is meant.”

In general, we speak of two different categories of SAF:

1. fuels from biological/biogeneous resources (plant or animal material, e.g. used cooking oil, plant oils, municipal waste, waste gases, and agricultural residues – to name a few); and
2. synthetic fuels, so-called Power-to-Liquid fuels (P-t-L), which are based on electrical energy from renewable energy sources, water and carbon dioxide.

“The chemical and physical characteristics of SAF are almost identical to those of conventional jet fuel and they can be safely mixed with the latter to varying degrees.” In addition, SAF may use the same supply infrastructure and do not require the adaptation of aircraft or engines. Therefore, SAF could currently have a significant impact on reducing GHG emissions in aviation if it would be available in adequate quantities at prices similar to conventional jet fuel or the price difference is otherwise compensated by the governments.

The term SAF consists of three elements that are defined by IATA as follows:

1. Sustainability in this context is defined as something that can be continually and repeatedly resourced in a manner consistent with economic, social, and environmental aims, and conserves an ecological balance by avoiding depletion of natural resources.
2. It is a fuel for Aviation with an alternative feedstock to crude oil, thus, it is non-conventional or advanced fuel and includes any materials or substances that can be used as fuel, other than conventional, fossil-sources.

117 What is SAF?, supra note 116, at 1.
119 What is SAF?, supra note 116, at 1.
120 Id.
121 Id.
122 Id.
123 Feedstock as in raw material from which fuels are produced. What is SAF?, supra note 116, at 1.
124 Such as oil, coal, and natural gas. Id.
3. Fuel means it is jet fuel that meets the technical and certification requirements for use in commercial aircraft.125

Since April 2023, there have been nine already certified conversion processes for SAF.126 Eight other conversion processes are currently still under evaluation.127 Each SAF is certified just like conventional Jet A fuel and JET A-1 fuel, whilst JET A fuel is limited to North America and Jet A-1 fuel is used in Europe and most of the rest of the world.128 As stated before, SAF can be used for any aircraft engine without any modifications or adaptation on the aircraft or engine becoming necessary.129 In the aviation fuel industry, the American Society for Testing and Materials (ASTM)130 serves as the international standard for jet fuel quality, and the same standard is applied to SAF.131 “ASTM International is committed to the World Trade Organization’s principles for international standards development”132 and the only globally recognized fuel standard.133 The ASTM ‘Standard Specification for Aviation Turbine Fuels’ therefore forms the global basis of all Jet A and Jet A-1 fuel quality specifications for each batch produced and is essential for operational safety and reliability.134 In addition to the “regular” Specification, a special Specification for

125 The definition can be found in: Id.
126 Conversion processes, ICAO, https://www.icao.int/environmental-protection/GFAAF/Pages/Conversion-processes.aspx (last access visited June 10, 2023).
127 See id.
129 What is SAF?, supra note 116, at 1.
133 Sustainable Aviation Fuel Certification and Astm International, supra note 131.
134 Id.
Fuel Containing Synthesized Hydrocarbons135 has been issued, which covers the manufacture of aviation turbine fuel that consists of conventional and synthetic blending components.136 Thus, it describes the fuel quality specifications for each qualified SAF production pathway.137 If a new SAF production pathway shall be included in the ASTM Specification for Fuel Containing Synthesized Hydrocarbons, the fuel has to undergo extensive testing, in which the maximum blend ratio with conventional jet fuel is defined and the fuel needs to demonstrate that such blend is fit for use.138 The key reason behind this extensive testing procedure is again safety.139

Moreover, SAF is a so-called “drop-in fuel”, which means that it can be automatically incorporated into existing airport fueling systems without any need to modify those.140 However, at the moment all certified SAF needs to be blended with fossil (petroleum-based) jet fuel, in most cases up to a maximum of 50\%.141 It is the intention to increase the use of SAF to 100\% in the near future and there are already some promising tests, that a flight on 100\% is possible.142

136 Sustainable Aviation Fuel Certification and ASTM International, supra note 131.

137 Id.

138 Id.

139 Id.

140 Thomas Pate, Todd K. Olynski, Anna Andreeva & Taylor Pullins, From Here to There: Challenges in meeting sustainable aviation fuel targets, White & Case (May 2, 2022), https://www.whitecase.com/insight-alert/here-there-challenges-meeting-sustainable-aviation-fuel-targets.

141 Id.

B. Examples of Current SAF

1. Fairs

At the Air Show 2022 in Berlin (Internationale Luft- und Raumfahrtausstellung “ILA”)143 for the first time, both exhibitor and customer aircraft had the opportunity to use SAF.144 The SAF offered was supplied by TotalEnergies in collaboration with the German Business Aviation Association (GBAA) and the Interessengemeinschaft der regionalen Flugplätze e.V. (IDRF)145 from hydprocessed esters and fatty acids (HEFA), and enables a reduction of GHG emissions of over 80\%.146 The offer was available to all ATI fuel card holders and it was limited to a maximum of 2,000 litres.147

During the AERO fair in Friedrichshafen, Germany this year (19 to 22 April 2023), the GBAA and air bp also offered to exhibitors and customers to fuel their aircraft with SAF.148 Such SAF was available in a total amount of 23,000 litres and was a mixture of 35\% SAF and 65\% fossil Jet A-1 fuel. The sale was subject to availability. The net price for one litre was EUR 3,05.

2. INERATEC

INERATEC GmbH is worldwide the biggest pilot project for production of P-t-l and shall be located in Frankfurt-Höchst.149 The P-t-L facility shall produce up to 2,500 tonnes of e-fuels150 per year151 from 2024 on.152 The construction of this facility was possible due to an investment of more than EUR 30,000,000.00.153

\begin{footnotesize}
\begin{enumerate}
\item 143 ILA 2022 took place from June 22, 2022, to June 26, 2022. Press Release, SAF feiert Permiere auf ILA, IDRF (June 3, 2022), https://www.idrf.de/presseartikel/saf-feiert-premiere-auf-ila/.
\item 144 Id.
\item 145 To be translated as “Association of regional airports” (free translation by the author).
\item 146 SAF feiert Permiere auf ILA, supra note 143.
\item 147 Id.
\item 150 SAF, Marine and other e-fuels for automotive transport.
\item 151 Which equals 4,350,000.00 tonnes.
\item 152 Groundbreaking For E-Fuel Production Plant in Frankfurt, supra note 149.
\item 153 See id.
\end{enumerate}
\end{footnotesize}
construction of the site has started in April 2023.154 In the third quarter of 2023, the start of commissioning at the site is targeted, in the beginning of 2024 the transition into plant operation shall follow.155 INERATEC aims to replace 5\% of European crude oil demand with synthetic fuels and chemicals by 2035.156 50\% of the e-fuel capacities produced in Frankfurt will be available for the aviation industry.

3. \textit{Neste}

The Finnish headquartered company Neste, who produces the largest amounts of SAF worldwide, has currently an annual production capacity of 100,000 tonnes (approximately 34 million gallons) and claims that by the end of 2023, it will have the capacity to produce some 1.5 million tonnes (515 million gallons) of SAF annually.157 Neste’s SAF is made from renewable waste and residue raw materials, like used cooking oil.158 According to Neste, SAF delivered by it produces around 80\% fewer carbon emissions over its lifecycle than traditional jet fuel.159 Thus, its SAF reduces GHG emissions by up to 80\% compared to fossil jet fuel.160

4. \textit{Montana Renewables LLC}

As of late February 2023, Montana Renewables LLC claims to be the largest SAF producer in North America and expects to maintain that status when a planned expansion is completed next year.161 They are advertising 12,000 barrels per day (BPD) of renewable feedstock, which is about 180 million gallons per year.162 Of that total, however, most is renewable diesel.163 The SAF

154 See id.
155 See id.
158 Id.
159 Id.
160 Id.
162 Id.
163 Id.
portion that is sold at Montana Renewables LLC is 30 million gallons per year.164

“Engineering and procurement is underway for a 2024 expansion to process 20,000 BPD, with the ability to flex between all renewable diesel or all SAF, as there is a huge, backed-up demand for SAF.”165 Moreover, they claim that they have the capability to offer SAF at a price parity with renewable diesel, which those producers with older generation technology are not able to offer.166 Montana Renewable’s cost advantage is partly due to its decision to deploy the latest technology from Haldor Topsoe in its renewable diesel retrofit and the (US) Inflation Reduction Act167 (IRA) has cleared the way for expansion to be economic.168

According to the United States Environmental Protection Agency (EPA), the IRA is the most significant climate legislation in U.S. history, offering funding, programs, and incentives to accelerate the transition to a clean energy economy and will likely drive significant deployment of new clean electricity resources, whereby most provisions of that Act became effective on 1 January 2023.169 The Act includes an Investment Tax Credit (ITC) and a Production Tax Credit (PTC), which allows taxpayers to deduct a percentage of the cost for renewable energy systems from their federal taxes.170 These credits are available to taxable business entities and certain tax-exempt entities eligible for direct payment of tax credits; however, specific projects are eligible for either the ITC or PTC, but not both.171

Montana Renewables LLC states that the IRA helps so that the production of SAF will be able to compete with renewable diesel as both fuels are now eligible for the blenders credit for advanced biofuel.172 “When the Clean Fuel Production Credit begins in 2025, SAF will be eligible for a tax incentive starting

164 Id.

166 Id.

167 H.R. Res. 5376, 117th Cong. (2022) (enacted).

168 Schill, supra note 165.

170 Summary of Inflation Reduction Act Provisions Related to Renewable Energy, supra note 169. SEC. 40B. Sustainable Aviation Fuel Credit of the IRA. Id.

171 Summary of Inflation Reduction Act provisions related to renewable energy, supra note 169.

172 Susanne Retka Schill, supra 165.
at USD 1.25 per gallon, increasing with each point of improved carbon reductions better than the 50% reduction threshold to a maximum of USD 1.75 per gallon.”173 Montana Renewables LLC produces its SAF from canola (which is known to be refined into rapeseed oil) and received the EPA approval in December 2022.174

5. *LanzaTech/LanzaJet*

LanzaTech announced a partnership with Swedish power company Vattenfall to use CO\textsubscript{2} from its heating plant as feedstock for SAF as well as with SkyNRG to develop a project called FLITE (Fuel via Low Carbon Integrated Technology), which is planned to produce 30,000 tonnes of SAF per year from waste-based ethanol.175 SkyNRG is working alongside organizations such as the World Economic Forum176 to make sure that a globally accepted reporting system for SAF is developed.177 In addition, LanzaJet178 has the project DRAGON (Decarbonizing and Reimagining Aviation for the Goal of Netzero)179, which is expected to be collocated with a steel mill in Wales, using steel mill emissions to produce jet fuel. LanzaTech’s investors and funders include All Nippon Air-

173 Id.

174 Id.

175 Katie Schroeder, *Against the Odds*, SAF MAGAZINE (Nov. 13, 2023), https://safmagazine.com/articles/against-the-odds.

176 According to its own presentation, “The World Economic Forum is the International Organization for Public-Private Cooperation. The Forum engages the foremost political, business, cultural and other leaders of society to shape global, regional and industry agendas. […] The Forum strives in all its efforts to demonstrate entrepreneurship in the global public interest while upholding the highest standards of governance. Moral and intellectual integrity is at the heart of everything it does.” *Our Mission*, WORLD ECONOMIC FORUM, https://www.weforum.org/about/world-economic-forum (last visited Aug. 1, 2023).

179 “The LanzaJet Project DRAGON will undertake the Front-End Engineering Design (FEED) of a facility in Port Talbot, South Wales that will produce over 100 million litres per year of ATJ Synthetic Paraffinic Kerosene (ATJ-SPK). The feedstock for the facility will be waste-based, low carbon ethanol, procured from a variety of waste sources, and the facility will have the ability to also use ethanol produced from local steel mill waste gases via LanzaTech’s gas fermentation platform. The ATJ-SPK produced will provide >70% GHG emission savings versus traditional jet fuel. Using a 30% blend target, the 100 million litres of ATJ-SPK will yield about 330 million litres per annum of blended SAF.” Project DRAGON Decarbonizing and Reimagining Aviation for the Goal Of Netzero, DEMOPLANTS21, https://demoplants21.best-research.eu/projects/info/3976/VEcQZJ (last visited Aug. 1, 2023).

C. Regulatory Incentives by States/Regions to Increase SAF Supply and Use

Below, we state a few examples of regulatory incentives for the increase of SAF supply, whereby the below is by no means a complete list.

1. SAF Grand Challenge (USA)

The “Sustainable Aviation Fuel Grand Challenge” is the result of the U.S. Department of Energy (DOE), the U.S. Department of Transportation (DOT), the U.S. Department of Agriculture (USDA), and other federal government agencies. These Departments are working together to develop a comprehensive strategy for scaling up new technologies to produce SAF on a commercial scale. A government-wide Memorandum of Understanding (MOU) was launched that will attempt to reduce the cost, enhance the sustainability, and expand the production and use of SAF. It contains the goals of achieving a minimum of a 50% reduction in life cycle GHG emissions compared to conventional fuel; and meeting the aim of supplying sufficient SAF to meet 100% of aviation fuel demand by 2050.

Through the MOU, the DOE, the DOT and the USDA intend to accelerate the research, development, demonstration, and deployment needed for the ambitious government-wide commitment to scale up the production of SAF to 35 billion gallons per

180 LANZAJET, supra note 178.
183 Id.
185 Sustainable Aviation Fuel Grand Challenge, supra note 182.
186 See id. Thus, more ambitious than the 63% or 85% stated by the EU, see below under 0.
year by 2050. A near-term goal of 3 billion gallons per year is established as a milestone for 2030 by the Biden administration, what stands for 14% of the US demand for US airlines in 2019.

The roadmap lays out six action areas spanning all activities with the potential to impact the SAF Grand Challenge objectives of first expanding SAF supply and end use, second reducing the cost of SAF, and third enhancing the sustainability of SAF. These six pillars include Feedstock Innovation, Conversion Technology Innovation, Building Supply Chains, Policy and Valuation Analysis, Enabling End Use, and Communicating Progress and Building Support.

The Biden administration announced three major policies to advance the production and use of SAF. The first one is the California Low Carbon Fuel Standard (CA-LCFS), which shall reduce GHG emissions in the whole transport sector. The policy applies a system which puts a value on carbon reduction that is generated from renewable fuels. SAF is under this Act recognized to generate credits.

The second is the U.S. Renewable Fuel Standard (RFS), which intentionally was created to require a minimum of renewable fuel for ground transport, in particular renewable diesel. SAF is, under this Act, allowed to generate compliance units, to be able to compete with ground transport. However, an obligation to use SAF is not imposed.

The third is the U.S. Sustainable Skies Act, which is aiming to raise incentives for the use of SAF. A credit of up to USD 2.0 per gallon is given for blenders that supply SAF. Further, this Act aims to increase the facilities that produce SAF with a grant of

187 Sustainable Aviation Fuel Grand Challenge, supra note 98a.
188 Id.
190 Id.
192 Fact Sheet, supra note 191, at 1.
193 Id.
194 Id.
195 Id.
196 Id.
197 Fact Sheet, supra note 191, at 1-2.
198 Id.
199 Id.
USD 1,000,000,000.00 over five years. In 2021, the demand for SAF in the US was 5 million gallons, which is three times higher than in 2017. US airlines committed for a production of 130 million gallons SAF for 2025. In that context, the IRA mentioned above should be noted.

2. UK

The UK’s “Jet Zero” strategy has set a government target for 10% SAF usage by 2030 and has allocated £165 million until March 2025 towards its “Advanced Fuels Fund.” There are also ongoing plans to introduce further support for SAF uptake, possibly via a government-backed contract for difference scheme that will set an agreed price for SAF in the UK.

3. Singapore

On 14 February 2022, the Civil Aviation Authority of Singapore launched the International Advisory Panel (hereinafter: “IAP”) in order to help support the development of the Singapore Sustainable Air Hub Blueprint. This consists of 20 international industry, tech and knowledge leaders discussing the international effort of making international aviation more sustainable and accessible for everybody and Singapore’s potential contribution to this. In September 2022, the IAP submitted its report, which is a blueprint for a decarbonisation roadmap for Singapore’s air hub with a medium-term target for 2030 and a longer-term for 2050. Methods, which are required to achieve these targets, are reported as well. The report further contains recommendations for airports, air traffic management and airlines. In relation to

200 Id.
201 SAF Grand Challenge Roadmap, supra note 191, at 3.
203 Id.
205 Id.
206 Id.
207 Id.
208 Id.
the latter, a roadmap shall be implemented to secure long-term supply of SAF. Further, a “buyer’s club” of SAF shall be established to create a demand. In addition, an offtake mechanism to SAF shall be introduced, and a carbon offset market in the aviation sector shall be built. Further, it shall be ensured that Singapore is an early adopter of aircraft technology.

4. EU

In the EU, one part of the Fit-for-55-package, already mentioned above, is the ReFuelEU Aviation Initiative, aiming to increase the production and uptake of SAF. For that purpose, the EC has presented a draft Regulation according to which aviation fuel suppliers shall ensure that all aviation fuel made available to aircraft operator at each Union airport contains a minimum share of SAF, including a minimum share of p-t-l. The specific minimum quota are set out in a timetable (Annex I).

The exact minimum quota was heavily debated, however, on April 26, 2023 the EP and Council of the EU announced to have finally reached a deal. The text now has to be formally approved by Member States in the Council, before entering officially into force as an EU Regulation with immediate effect within the Member States. This last step will likely be completed without significant hurdles, as the Council and EP had already found a compromise during a long trialogue process which was then announced on April 26, 2023. The minimum quota agreed on that date are shown in the following timetable:

210 Brownlow, supra note 209.

211 Id.

212 Id.

213 The proposal was last amended July 7, 2022. 2023 O.J. (C 47) 298.

217 Id.

218 Id.
The percentage of SAF in 2050 shall be 70% with a sub-quota of 35% P-t-L.219 On September 13, 2023 the EP approved such quota.220 Member States shall notify penalties to the EC by December 31, 2023, if quota are not reached.221 A transitional period of 5 years is foreseen to allow aviation fuel suppliers to adjust to these new requirements.222 During this phase, aviation fuel containing higher shares of SAF may be used to compensate for lower shares of SAF or for the reduced availability at certain airports.223 However at the moment, it is unclear how exactly such levelling/compensation shall be actually performed. In addition to the European initiative, some European nations (like France, Italy and Germany) had already adopted earlier national laws for future minimum quota of SAF.224 However, the EC has clarified that any national law regulating the supply of SAF will have to be withdrawn, as ReFuel EU Aviation will be the only European mandate for aviation fuel suppliers.225

Moreover, Art. 5 of the ReFuelEU Aviation Regulation226 includes a refuelling obligations for aircraft operators whereby

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
 & 2025 & 2030 & 2032 & 2035 & 2040 & 2045 \\
\hline
SAF & 2\% & 6\% & 6\% & 20\% & 34\% & 42\% \\
P-t-L & 0 & 1.2\% & 2\% & 5\% & 10\% & 15\% \\
\hline
\end{tabular}
\end{table}

220 Voegele, \textit{supra} note 219.

221 E.g. penalty in Germany: EUR70.00/GJ * 44 GJ/t (lower heating value (LHV FT- kerosene according to RED II) = EUR 3,080/t. Council Directive 2023/2405, art. 12, 2023 O.J. (L) 21.

the yearly quantity of aviation fuel uplifted by a given aircraft operator at a given EU airport shall be at least 90% of the yearly aviation fuel required, in order to avoid contra-productive ‘fuel tankering’ in other regions of the world.227 This regulation applies to aircraft operators with more than 500 passenger flights or more than 52 all-cargo flights in a year.228

The ReFuelEU Aviation regulation however does not distinguish between EU-carriers and non-EU-carriers, so it remains unclear how the actual risk of ‘fuel tankering’ shall be avoided. Such obligation on airlines is, however, backed by the incentives pursuant to new recital 15 as well as Article 3c – paragraph (b) of the amended EU-ETS Directive229, which are provided to airlines for the early use of SAF:

For the period from 1 January 2024 until 31 December 2030, a maximum of 20 million of the total quantity of allowances shall be reserved in respect of commercial aircraft operators, on a transparent, equal treatment and non-discriminatory basis for uplifting SAF under Art. 4 (1) of the Refuel EU Aviation Regulation.

[...]

Those allowances shall be allocated by the Member States in the same manner as a contract for difference, covering the remaining price differential between fossil kerosene and SAF for individual aircraft operators, in proportion to the amount of SAF used and reported under ReFuelEU Regulation, in order to incentivise early movers and to support the creation of a Union market for SAF. An additional 20 million allowances should be reserved when flights departing from the EEA to third countries are part of the EU-ETS scope for the same time period.”230

When calculating the price differences, the EC shall take into account the report published by EASA pursuant to Art. 12 of the ReFuelEU Aviation Regulation.231 The EC shall publish in the Official Journal details of the average cost difference between fossil

227 Id.
231 Proposal for a Regulation of the European Parliament and of the Council on ensuring a level playing field for sustainable air transport, EUROPEAN COMMISSION
kerosene, taking into account incentives from the price of carbon and from harmonized minimum levels of taxation on fossil fuels, and the relevant eligible aviation fuels on a yearly basis for the previous year.232

Thus, from the above it is clear, that although the free aviation EU-ETS allowances shall be reduced in 2024 and 2025 (followed by full auctioning from 2026 onwards), there will be still some free allowances available for commercial aircraft operators in relation to use, respectively purchase of, SAF.

The quantity of such allowances shall be proportionate to the total GHG emissions saved according to the treatment of those fuels under the RED III and the delegated acts referred to in Article 14 (1) of that Directive. The Directive is legally binding since June 2021 but has been recently amended as mentioned above.

The actual share of the price differential covered thereunder depends on the fuel type:233

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Price Differential Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced biofuels, hydrogen</td>
<td>70 %</td>
</tr>
<tr>
<td>Renewable fuels of non-biological origin ("RFNBO")</td>
<td>95 %</td>
</tr>
<tr>
<td>Other fuels (e.g. HEFA)</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Thus, the EU provides an incentive for aircraft operators to use RFNBO as well as biomass-based SAF certified as compliant with the sustainability framework of RED III by taking over a certain percentage of the price difference to fossil fuels and attributing to them “zero emissions” under the scheme.234 This means i.e. the airline does not have to surrender any emissions allowances when SAF is used instead of fossil jet fuel, and the higher price of SAF (compared to conventional jet fuel) is compensated by the “new SAF allowances” under the revised EU-ETS Directive.235

According to RED II, Member States may count SAF towards the achievement of their national renewable energy targets, on the condition that they comply with the sustainability criteria listed in that Directive.236 A specific multiplier of 1.2 is applied
to the supplied quantity of non-food- and feed-based SAF, meaning that they contribute 20% more of their energy content in accounting towards the renewable energy targets.237 The EU requirements for qualifying the use of SAF as an advantage or to count towards minimum quota, are much stricter than in the US, e.g. in order to qualify biofuels as renewable energy sources they have to achieve at least 70% reduction of GHG emissions against fossil fuels (see Art. 2 of RED III), whereas under the IRA and CORSIA it is lower (see below).238

For SAF to be eligible under CORSIA, it must adhere, until December 31, 2023, only to the following two criteria:

1. achieve net GHG emissions reductions of at least 10% compared to the baseline life cycle emissions values for aviation fuel on a life cycle basis; and
2. not be made from biomass that is either obtained from land converted after 01 January 2008 that was primary forest, wetlands, or peat lands or contributes to degradation of the carbon stock in primary forests, wetlands, or peat lands as these lands all have high carbon stocks.239

For SAF to be eligible under CORSIA on and after January 1, 2024, it must adhere to additional criteria, which are set out below. Moreover, the second criteria stated above, has been widened to include obtained or “extracted not only from land but as well aquatic ecosystems such as coral reefs, kelp forests, seagrass meadows, estuaries, tidal salt marshes or mangrove forest.”240

The additional criteria are as follows:

1. Practices will be implemented to monitor, mitigate and compensate any material incidence of non-permanence resulting from carbon capture and sequestration activities;
2. It will maintain or enhance water quality and availability;
3. It will maintain or enhance soil health;
4. It will minimize negative effects on air quality;
5. It will maintain biodiversity, conservation value, and ecosystem services;
6. It will promote responsible management of waste and use of chemicals;

237 Id.
238 Soone, supra note 234, at 6.
240 CORSIA Sustainability Criteria for CORSIA Eligible Fuels, supra note 239, at 3.
7. It will respect human and labour rights;
8. It will respect land rights and land use rights, including indigenous and/or customary rights;
9. It will respect prior formal or customary water use rights;
10. It will contribute to social and economic development in regions of poverty; and
11. It will promote food security in food insecure regions.\footnote{CORSIA Sustainability Criteria for CORSIA Eligible Fuels, supra note 239, at 3-5.}

For Low Carbon Aviation Fuel (LCAF) the same as stated above applies and one additional criterion, namely that the production of CORSIA LCAF should minimize seismic acoustic and vibrational impacts.\footnote{Id. at 8-9.}

As stated before, CORSIA allows airlines to reduce their offsetting requirements using CORSIA eligible fuels.\footnote{Press Release, Neste Delivers Aviation Industry’s First Ever CORSIA Certified Sustainable Aviation Fuel to American Airlines, NESTE (July 12, 2022), https://www.neste.com/releases-and-news/renewable-solutions/neste-delivers-aviation-industrys-first-ever-corsia-certified-sustainable-aviation-fuel-american.} However, until recently, no airline across the world has actually used CORSIA-certified fuel.\footnote{Id.} Neste’s recent delivery of SAF to American Airlines at San Francisco airport in May 2022, which was certified as CORSIA eligible fuel by the International Sustainability and Carbon Certification\footnote{Id.} (ISCC) makes this a first in aviation history.\footnote{Id.} Currently, two certification schemes are approved by the ICAO Council as meeting the requirements. These are the above named ISCC and Roundtable for Sustainable Biomaterials\footnote{See also Book & Claim Explained: What is Book & Claim?, SKYNRG, https://skynrg.com/book-claim-explained-what-is-book-and-claim/#:~:text=The%20Book%20%26%20Claim%20model%20is,before%20entering%20a%20power%20outlet (last visited Sept. 9, 2023).} (RSB). For the above-described pilot project, the decision was made to pursue an ISCC certification as Neste had worked with ISCC on similar certifications.\footnote{See, e.g., ISCC EU 203 Traceability and Chain of Custody, ISCC 59 (July 1, 2021), https://www.iscc-system.org/wp-content/uploads/2022/05/ISCC_EU_203_Traceability_and_Chain-of-Custody-v4.0.pdf.}
The ISCC system is a global sustainability certification system for renewable products and their supply chains.249 Today, almost 6,000 companies in more than 130 countries use the ISCC system to demonstrate sustainability and credible GHG emissions reductions along their supply chains.250 ISCC is widely applied for the certification of alternative fuels, including SAF, with most major producers and suppliers being part of the ISCC system.251

ISCC was recognized as a Sustainability Certification Scheme ("SCS") under CORSIA by the ICAO Council at the end of 2020.252 ISCC CORSIA certification ensures compliance with the CORSIA Sustainability Criteria for CORSIA eligible fuels.253 More than 20 companies have been certified under the ISCC CORSIA certification standard254 More certifications are in the pipeline, as a growing number of companies across SAF supply chains show interest in CORSIA certification.

D. OTHER SAF BENEFITS

1. Assist Developing Nations

The growth of crops that are needed for the SAF production may be suitable on land that is unviable for food crops.255 This can provide economic benefits to countries or regions that have such marginal or unviable land for food agriculture, but which may be suitable to grow crops for the SAF production.256 Some regions also have other sources of feedstock such as municipal waste.257 This could be a solution to actually benefit from a new industry but at the same time not endanger the region’s ability of food production.258 The engagement in the SAF crop production

250 See ISCC Works Towards a Sustainable World, supra note 249.
251 ISCC Works Towards a Sustainable World, supra note 249.
252 CORSIA Approved Sustainability Certification Schemes, ICAO (Nov. 20), https://www.icao.int/environmental-protection/CORSIA/Documents/ICAO%20document%204%20-%20Approved%20SCSs.pdf.
253 CORSIA Approved Sustainability Certification Schemes, supra note 252.
255 What is SAF?, supra note 116, at 3.
256 Id.
258 What is SAF?, supra note 116, at 3.
could lead to employment growth and at the same time, if applicable; encourage the improvement of waste management.259 It is common for waste to be an environmental problem in developing countries.260 Engaging in SAF industry may have the positive side effect of processing waste, while at the same time reducing CO\textsubscript{2} emissions.261

If by these incentives, the production goes up, it can promote the cycle of unlocked additional demand, which again leads to an increase of SAF users, not only airlines themselves, but also customers of air carriers, by bridging a significant price premium for the demanded SAF.262

2. \textit{Reduction of NO\textsubscript{x}}

SAF not only reduces CO\textsubscript{2} emissions, but due to the fact that it burns cleaner (as it contains fewer aromatic compounds) than fossil fuel, it reduces as well non-CO\textsubscript{2} emissions that come from nitrous oxides and contrail-induced cloud cover (NO\textsubscript{x}). Through reduction of contrails, that have an even worse impact on the climate than CO\textsubscript{2} emissions, actually two-thirds of the climate impacts of air transport are due to non-carbon-dioxide effects and only one-third from CO\textsubscript{2} emissions.263

Therefore, the EC decided that from January 1, 2025 onwards, aircraft operators have to report once a year on the NO\textsubscript{x} aviation effects occurring.264 For this purpose, the EC shall adopt by August 31, 2024 an implementing act in order to include NO\textsubscript{x} in a MRV framework.265 By January 1, 2028, based on the results of the application of the MRV framework of NO\textsubscript{x}, the EC shall submit a

\begin{itemize}
\item 259 Id.
\item 260 Id.
\item 261 Id.
\item 262 Thomas Bock & Antoine Habersetzer, \textit{A Book and Claim Approach for SAF - aIREG’s perspective on basic design principles}, AVIATION INITIATIVE FOR RENEWABLE ENERGY IN GERMANY e. V. (“AIREG”) 5, https://aireg.de/wp-content/uploads/2022/06/bc-papier_v01-5.pdf (last visited Sept. 9, 2023).
\item 264 2023 O.J. (L 130) 127.
\item 265 Id.
\end{itemize}
report and, where appropriate, a legislative proposal after having first carried out an impact assessment to mitigate such effects by expanding the scope of the EU-ETS to include NOx.266

Thus, the use of more SAF is not only beneficial for the reduction of CO₂ emissions but as well for reduction of NOx emissions, which have an even worse impact on the climate than CO₂.

E. THE NEED TO FURTHER INCREASE PRODUCTION AND UPTAKE OF SAF

Notwithstanding the above-mentioned examples of actual SAF supply and benefit, as of today SAF accounts for only about 1% of the jet fuel produced worldwide.267 Therefore, in order to actually reach the minimum quota, which are established in Europe, and to reach the even more ambitious climate protection goals of the Paris Agreement, the production and uptake need to be increased significantly. In that context, it also needs to be considered that the ramping up of p-t-l production will take some time as it still is a very costly process.268 On the other side, the biomass that is available for SAF production and simultaneously acceptable under EU-ETS/RED III and CORSIA, may be used as well for production of alternative fuels for use in other transportation sectors and even for other industries, like e.g. the chemical industry, which needs to decarbonized as well.

If all sustainable feedstock, like e.g. municipal waste, agricultural residues and cooking oil waste, were dedicated solely to SAF production, annual production levels of about 390 billion of litres of SAF by 2040 could be achieved. Statistical projections indicate that this amount will also be needed.269 However, it is not to be expected that all sustainable feedstock will be used solely for SAF production. Therefore, more needs to be done in order to increase the production and use of SAF.270 A way forward is a (global) book-and-claim system for SAF, which shall be explained in the chapter below.271

266 Id.
267 What is a Book-And-Claim Platform for SAF and how does it Work?, supra note 115.
268 A real scaling of the production for p-t-l is estimated by Impact on Sustainable Aviation e.V. may be achieved the earliest within 10 years.
270 What is a book-and-claim platform for SAF and how does it work?, supra note 115.
271 Id.
A. Scaling up SAF Production by Use of Book-and-Claim

As the production of SAF is still limited today, possible buyers and end users often cannot access it through the existing supply chain network.⁷² SAF is currently produced and supplied in a few countries and airports (currently only 60 airports worldwide distribute SAF).⁷³ This makes the needed fuel often out of reach for commercial airlines, business aviation operators, and their private or corporate customers.⁷⁴ Only very few providers offer location searches for SAF provision facilities.⁷⁵

Thus, if airlines want to offer SAF to their passengers or use it to reduce their financial obligations under EU-ETS and CORSIA, they cannot get SAF onto their aircraft without costly and emissions-generating, and thereby counterproductive, logistics.⁷⁶ Thus, even though private and corporate persons may wish to pay the extra premium that SAF entails and have the funds to do so in order to boost their ESG⁷⁷ commitments and account for their GHG emissions, it is simply not available for the particular flights. Moreover, many of the big European and US commercial airlines have committed to using about 10% SAF in their operation by 2030, whereas Latin America’s LATAM has set its target only at

²⁷² Id.
²⁷⁴ What is a Book-And-Claim Platform for SAF and how does it Work?, supra note 62.
²⁷⁵ 4Air has created an interactive map to help find locations with SAF supply; today the map only includes destinations with physical SAF supply, the map is continuously updated as new locations are verified by 4AIR or new announcements are made; users will be directed to the FBO’s website in order to enquire about the quantities available at the respective airport. Where can I find Sustainable Aviation Fuel (SAF)?, 4AIR, https://www.4air.aero/saf-map (last visited June 8, 2023).
²⁷⁶ What is a book-and-claim platform for SAF and how does it work?, supra note 115.
²⁷⁷ ESG is the term for “Environmental, Social and Governance” that stands for a set of aspects, which should be considered when investing in companies. It takes into account environmental, social and corporate governance issues. #1 What is ESG?, Deloitte, https://www2.deloitte.com/ce/en/pages/global-business-services/articles/esg-explained-1-what-is-esg.html (last visited Jan., 31, 2024) For the environmental aspect, see also the GHG Protocol, which supplies the world’s most widely used GHG accounting standard and distinguishes between direct emissions (scope 1) and indirect emissions (scope 3). GHG PROTOCOL, https://ghgprotocol.org/ (last visited Oct. 5, 2023).
5%, not due to lack of will but because of the “obstacles to getting its hands on more.”

Therefore, a block-chain based book-and-claim system is a solution to overcome that hurdle and would boost the production of SAF. Following the scaling up of SAF production, the costs of SAF will, as a logical consequence, be reduced over time. Moreover, a book-and-claim concept may also be suitable for airlines in order to reduce their obligations under EU-ETS and CORSIA. The general concept of book-and-claim and its specific one in relation to SAF is described below. Further, existing systems will be mentioned, however, in order to achieve all what could be achieved with a widely used book-and-claim system, that is immune against fraud and “greenwashing”, it should be a system administered by a government entity with a certain scope in relation to participants and jurisdictions (see 0. Conclusion). Whereby a worldwide system would, of course, be best, however, very difficult to establish, hence, we recommend such a system, at least for now, on an EU level.

B. General Description of Book-and-Claim System

The book-and-claim system decouples a sustainability claim that results from the use of a resource from the location where the resource was physically consumed. Technically speaking, book-and-claim is a chain of custody model that allows to separate the environmental benefits, from the physical product and to transfer them via a dedicated registry in the form of a book-and-claim unit or certificate. In other words, book-and-claim is a model in which the administrative record flow does not necessarily connect to the physical flow of material or product throughout the supply chain.

280 Id.

282 What is a Book-And-Claim Platform for SAF and how does it Work?, supra note 115.

A similar model has been already in extensive use in the green electricity market for decades, which let to lowered overall emissions, as even people who are located far away from e.g. wind turbines are still able to buy electricity generated by the turbines and thereby increasing demand for wind energy.284 The supply followed, leading to lowered overall emission per one unit of electricity consumed.

C. SAF Book-and-Claim

Regarding the book-and-claim of SAF, the concept would be similar: While the purchaser of the SAF is not technically flying on SAF, its purchase demonstrates market demand and supports the development of SAF supply globally.285 In turn, the purchaser may claim its SAF emissions reduction purchase towards its GHG reduction goals.286 In other words, book-and-claim for SAF allows aircraft operators to buy “SAF certificates” and offer those certificates to their customers.287 In addition, airlines may reduce their own obligations under EU-ETS and also under CORSIA, without being geographically tied to the SAF production facility or SAF supplier.288

Each transaction booked under such a system needs to be recorded with a unique identifier.289 The SAF producer reserves the booked amount of SAF and forwards it to a physical fuel distribution network.290 Thus, the person making the booking and purchasing of SAF will not use it on the aircraft with which it performs the flight, because its departure location is not near any SAF supplier.291 Instead, the SAF is piped into the fuel system of a different airport and an aircraft located at that airport (which is near a SAF production facility) will use such SAF (which was bought from elsewhere in the world).292 Still, the person who purchased the SAF should be able to use such purchase in order to

286 Id.

287 Id.

288 Id.

289 Id.

290 Id.

291 Id.

292 Id.
reduce its carbon footprint or for reporting requirements under Greenhouse Gas Protocol. In addition, the commercial airline who purchased (but did not use) should be able to reduce its obligations under CORSIA or EU-ETS (as applicable). In such a book-and-claim system it is important to ensure full traceability so there is no risk of double counting or any other fraud. However, the same SAF should enable (i) a supplier to comply with its supply obligations under ReFuelEU Aviation; and (ii) an airline to reduce either its obligations for purchasing emission allowances (EU-ETS) or its offsetting requirements (CORSIA). This may be achieved through a trustworthy third party that runs the system and guarantees the credibility of the process, backed by independent verification or even better, by a public authority. If it is ensured that the SAF bought by someone in the book-and-claim system, is actually used by customers who are simply paying for jet fuel and do not get to claim credit towards using SAF, there should be no double-counting.

Unfortunately, as of today, there is no global certification for a SAF book-and-claim system. However, the environmental integrity of SAF within a book-and-claim system could be ensured by only allowing SAF compliant with widely accepted frameworks, such as in the EU RED, in the US the LCFS systems or CORSIA requirements to be registered as tradable units. Ideally, tradable units could be allowed to comply with more than one regulatory framework, giving more flexibility to the system, provided the respective SAF meets the sustainability criteria required under each framework. At the same time, the system should allow for positive market dynamics through healthy competition between feedstock/raw materials, production pathways and producers within the system.

Trading between end-users (i.e. outside the transport industry) should be prohibited to avoid artificial shortages and speculation of tradable units. At the same time, tradable units should have

293 Id.; Bock, supra note 262, at 4.
294 Book & Claim for SAF - FAQs, supra note 285.
295 Id.
296 Book & Claim for SAF - FAQs, supra note 285.
297 2018 O.J. (L 328) 1.
299 Bock, supra note 262, at 4.
300 Id.
301 Id.
302 Id.
a certain expiry date to ensure they are not accumulated, and production and use occur within a given timeframe. For instance, the expiry date could be set at 12 to 24 months after SAF blending and certification.

In relation to a tradable unit for SAF, aireg e.V. suggested that it should represent a metric ton of SAF and include, at a minimum, the following associated sustainability information:

1. Unique identifier of tradable unit;
2. Date and country of issuance of tradable unit;
3. Unique identifier of underlying proof of sustainability;
4. SAF production pathway;
5. Feedstock type;
6. Producer, production date and production site of SAF;
7. Date and site of blending/certification point of SAF;
8. Life-Cycle GHG Value of SAF;
9. Additional information as required by any applicable regulatory policy.

The sustainability information related to the tradable SAF unit should be transferred and claimed only together as in line with best practice for renewable electricity claims. However, a barrier in relation to the use of SAF by airlines is the administrative effort resulting from the current methodology to account for emission reductions associated with the actual use of SAF under EU-ETS. In the article cited in the previous sentence, the authors concluded that the book-and-claim concept stands out as an easy-to-implement, field proven and robust system against fraud, therefore, they further elaborate, that:

The existing supply infrastructure for aviation fuels can be used unrestrictedly, a wide range of aircraft operators could access SAF without having to physically possess the fuel itself and the administrative burden is greatly reduced. Furthermore, the concept can

303 Bock, supra note 262, at 4.
304 In the energy sector the guarantees of origin must be used twelve months after production of the corresponding amount of energy and if not used within that time frame, they will be subsequently devalued. Best Practice Recommendations, RE DISS II 2 (Sept. 30, 2015), https://www.aib-net.org/sites/default/files/assets/facts/residual-mix/222-RE-DISS_Best_Practice_Recommendations_v2.4_Final.pdf.
305 Bock, supra note 262, at 3.
306 Id. at 4.
307 Id.
make use of synergies, i.e., adapting software and using certificates (e.g. guarantees of origin (GoOs)) from existing book and claim concepts while fraud protection is ensured by national customs. As aviation fuel for commercial flights is exempted from excise tax, it is subject to tax supervision based on a uniform system throughout the EU. For this purpose, detailed data on fuel stocks and movements are recorded. If these data were shared with the EU-ETS authorities, the administrative effort could be further minimized. Based on these findings, this Article proposes an advanced methodology to account for SAF in the EU-ETS based on the book and claim principle.309

In relation to the protection ensured by national customs, the authors refer to the excise or energy tax supervision by national customs (e.g. using the supranational binding Excise Movement and Control System (EMCS)).310 It should be noted though, that the EC intends to eliminate the energy tax exemption for commercial flights. However, the system is existent and such supervision will most probably prevail as Member States want to take action to prevent unnoticed fuel withdrawals in order to avoid untaxed fuel from being used for energy-tax relevant purposes.311

By redeeming a certificate acquired through book-and-claim, it should be possible for an aircraft operator to declare the equivalent quantity of Jet A/ Jet A-1 as SAF, regardless of its true origin, and thereby reducing the number of emission allowances that must be acquired and surrendered under EU-ETS or reducing the offsetting requirements under CORSIA.312

When the EP voted on 7 July 2022 to support the EC’s ReFuelEU Aviation initiative to introduce an obligation to uplift an increasing percentage of SAF for all flights leaving the EU, it amended the EC’s draft rules to include

i. “more ambitious blending levels;”
ii. “a higher sub-mandate for synthetic fuels;” and
iii. “elements of a book-and-claim system”

... to “enable fuel suppliers to provide, and airlines to uplift, SAF in the most cost-effective manner and to avoid imposing an ‘undue burden’ on air transport operations at small airports or airports in remote parts of the EU.”313

309 Pechstein, supra note 308, at 10.
310 Id. at 9.
311 Id. at 7.
312 Id.
313 2023 O.J. (C 47) 298.
In that context the following was stated in Amendment 98 of the proposal for such a Regulation (Art. 13 – para. 1a (new)):

By 1 January 2025, the Commission shall adopt delegated acts in accordance with Article 13a to supplement this Regulation by laying down detailed arrangements for the SAF flexibility mechanism, guaranteeing a level playing field and a high level of environmental integrity, as well as minimising the risk of fraud, irregularities and double claiming. Such detailed arrangements, incorporating elements of a book & claim scheme, may enable the setting up of a system of tradability of SAF, including detailed rules regarding the registration, allocation, accounting and reporting of the supply and uptake of SAF.314

Such a book-and-claim system would be very beneficial for airlines as such a system ensures that only SAF (as certified under RED III or CORSIA, as applicable) is purchased. Thus, it would eliminate the burden on the airline of obtaining itself such proof, which is currently very cumbersome and could be done only by airlines of a certain size that have the capacity for performing such additional tasks. If a central well-trusted book-and-claim registry (administered by an EU governmental entity) has been established, the airline does not have the obligation itself (to ensure and provide proof to the respective authority, that the SAF purchased actually complies with the sustainability criteria under EU-ETS or CORSIA) but the system ensures itself that only SAF meeting the respective criteria will be entered into the book-and-claim system. Thus, when the airline purchases such SAF in the book-and-claim system, it is already clear that it fulfils the applicable sustainability criteria.

Currently business aviation is the biggest customer for all SAF suppliers as the book-and-claim mechanism was developed in that sector.315 Owners and passengers on such jets are more keen to pay the additional price for SAF and use the purchase of SAF (even if not used by themselves) in order to reduce their own carbon footprint and make that visible to its business partners and financiers.

The EBAA has also stated in a press release that although EBAA advocated the inclusion of a book-and-claim system within the scope of the legislation, such a system regrettably did not found

314 2023 O.J. (C 47) 345.
its way in the legislation yet and now business aviation is facing the following challenges.\footnote{Refuel EU Set Ambitious SAF Mandate but Opens Book-And-Claim Dilemma for Business Aviation, EBAA (Sept. 27, 2023), https://www.ebaa.org/industry-updates/refuel-eu-sets-ambitious-saf-mandate-but-opens-book-claim-dilemma-for-business-aviation/}

As business aviation operators face ongoing challenges in securing a steady supply of SAF, partly due to the competition with airlines which possess stronger bargaining power when dealing with fuel suppliers, a Book & Claim system would allow operators to purchase SAF even if it is not available in their refuel location. This, in turn, would contribute to a virtuous cycle by boosting both the supply and demand for SAF. Moreover, the definition of ‘Union airport’ as an airport with passenger traffic higher than 800,000 a year poses additional challenges for business aviation as SAF availability at smaller airports, to which business aircraft fly to, will be very limited if not inexistent. EBAA expressed concern that due to these elements, Business aviation operators will face considerable challenges in meeting decarbonisation objectives.\footnote{Id.}

D. Market Overview of Existing Book-and-Claim Systems

ICAO has provided an overview\footnote{Supporting Policies to Promote the Development and Deployment of Cleaner Energy for Aviation – Opportunities And Challenges - ICAO Environmental Regional Seminars April 13 to May 8, 2023, ICAO ENVIRONMENT 29, https://www.icao.int/Meetings/RS2023/Documents/1-Supporting-Policies.pdf (last visited June 8, 2023).} of SAF reporting and accounting initiatives (e.g. book-and-claim systems) of various aviation stakeholders, whereby only two provide guidance/methodology, a registry and verification. These two systems are introduced as follows.

1. Roundtable on Sustainable Biomaterials (RSB)

Roundtable on Sustainable Biomaterials (RSB) has developed a book-and-claim certification approach.\footnote{RSB Book and Claim Programme, supra note 283.} In close collaboration with stakeholders and industry experts, e.g. Air bp, United Airlines, Microsoft, the Sustainable Aviation Buyers Alliance (“SABA’)), RSB is currently piloting with SAF transactions.\footnote{Id.} Air bp has supplied SAF in Scandinavia already starting in 2016
for regulatory reporting.\(^{321}\) Microsoft was the first US company to fund SAF emissions reductions in partnership with airlines, and United was the first airline globally to use SAF on an ongoing basis.\(^{322}\) That system can be used with jet fuel purchases currently only in France, Germany, Spain, Switzerland, the UK and the US.\(^{323}\)

The RSB Book-and-Claim system consists on one hand of the RSB Book & Claim Manual, which is a procedure describing the rules which allow a company to register, transfer and retire credits in the RSB Book-and-Claim system.\(^{324}\) On the other hand, it contains the RSB Book & Claim Registry, which is a system for the use of the transaction data of the respective process.\(^{325}\) The Registry requires that all users\(^{326}\) are registered within the system.

Users that register (“book”) credits into the RSB Book-and-Claim Registry must hold a valid RSB Chain of Custody (Trader) certificate against the RSB Global certification scheme. This allows their Book-and-Claim transactions to be independently verified by an auditor to ensure traceability and no double counting. Those that “trade” or “retire” (claim) credits in the RSB Book-and-Claim Registry need only to be registered within the system as users.\(^{327}\)

The SAF producer who “books” the SAF into the RSB Book-and-Claim Registry must hold a valid RED or CORSIA certificate.\(^{328}\)

Meanwhile RSB has issued its third version of the Book-and-Claim Manual and states that it is perfectly positioned to lead in the development of book-and-claim by building on its “best-in-class sustainability framework, which has been recognised by RED and CORSIA”.\(^{329}\) RSB has been operating a foundational

\(^{321}\) Book & Claim for SAF - FAQs, supra note 285.

\(^{324}\) Id.

\(^{325}\) Id.

\(^{327}\) Id.

\(^{328}\) Id.

\(^{329}\) RSB Book and Claim Programme, supra note 283.
registry since 2021, which is currently being upgraded to a web-based application and is expected to be launched in 2023.330

2. International Sustainability and Carbon Certification (“ISCC”)

ISCC331 is listed in the above-mentioned ICAO paper as one organization that has – like RSB - commenced a book-and-claim initiative, which implements guidance/methodology, a registry and verification. Despite this, ISCC actually states that a third chain of custody option known as book-and-claim is not allowed under RED, because with book-and-claim the traceability characteristics and the actual material flow cannot be provided.332 Whether that is actually the case with the RSB book-and-claim system may be doubted. RSB actually states that the airlines with and without physical access to SAF can already operate 100% SAF flights whereby up to 50% physically via “mass balance” and the remaining share virtually through book-and-claim.333 However, ISCC further states that any trade of sustainable material under ISCC always refers to a specific batch of sustainable material and a sustainability declaration is issued for each delivery of sustainable material. This declaration is linked to a specific amount of physical sustainable material334 and, therefore, the issuance and trading of sustainability declarations without the link to an equivalent amount of physical sustainable material is considered as book-and-claim and thus not allowed under ISCC.335

V. CONCLUSION

In order to comply with the legally binding Paris Agreement and the European Climate Law and to fulfil the ambitious targets for the aviation sector, it is necessary that the production and use of SAF is substantially scaled up, as otherwise, those targets will not be achieved. Therefore, aircraft operators should be enabled

331 See Who We Are, supra note 127.
335 Id.
(by the governments) to use SAF purchases through a book-and-claim system in order to reduce their obligations under CORSIA, respectively EU-ETS.

In relation to EU-ETS, the airlines should also be able to cover the extra premium payable for SAF by using the newly introduced “SAF allowances”, even if such SAF was purchased through a book-and-claim system. If implemented, such opportunities should be broadly communicated, so that aircraft operators have an incentive to actually purchase SAF and thereby contribute to the scaling up of production. Governments have raised concerns that if the SAF is purchased by one of its airlines but not used by it (as purchased through book-and-claim), such purchase could not count towards the national GHG reduction quota under RED III of that country.336 However, if airlines are part of the book-and-claim system, each country should be able to account for the purchases of SAF by the airlines incorporated in its country and thereby account for its GHG reduction obligations. Otherwise, we do not see how the SAF production and uptake could be scaled-up in substantial amounts as it is actually necessary, in particular, if considering the difficulties in obtaining financing (no one wants to be the first) for SAF production facilities and the competition in relation to feedstock in order to decarbonise, respectively, defossilise also other transport sectors and even other industries.

At least the EC is now planning to launch a study on book-and-claim for SAF.337 Moreover, Art. 15 in the ReFuel EU Aviation Regulation stipulates in relation to the “flexibility mechanism” that:

\begin{quote}
By 1 July 2024, the Commission shall... assess possible improvements or additional measures to the existing SAF flexibility mechanism, such as establishing or recognising a system of SAF tradability. This would enable fuel supply within the Union without requiring a physical connection to a supply site. The objective is to further streamline the supply and utilisation of Sustainable Aviation Fuel (SAF) for aviation during the flexibility period, incorporating elements of a Book & Claim system.338
\end{quote}

This can only be seen as the policymakers finally taking a look into the right direction in order to foster SAF production and use, which is so urgently needed to combat climate change in...
aviation. It should be one (master) book-and-claim registry for SAF which is available for all EU member states in order to avoid double counting, by having booked SAF into several registries. A book-and-claim system administered by a government entity on an EU level should be able support multiple legislative instruments, such as the SAF minimum quota of suppliers (ReFuelEU Aviation339), the obligations of airlines under EU-ETS and CORSIA, and the obligations of the EU countries under RED III, by facilitating and simplifying the compliance processes. The current patchwork of legislation-specific requirements imposes a significant burden on SAF suppliers and its users (the airlines). Even the flexibility mechanism under ReFuelEU Aviation340 reduces the burden of supplying SAF to all airports only up to the end of 2034 and it is not clear how such flexibility mechanism should be actually applied. A book-and-claim system used for the whole EU, would certainly help to administer such flexibility. Such an EU-wide book-and-claim system would need to be introduced by an EU-Regulation or a Directive, the latter would then have to be implemented into national law within a set time frame. This would ensure that only one system with the mentioned benefits exists. A cooperation with a private company via a call for tenders would guarantee that EU law is respected in choosing a provider for such a blockchain-based system. At a second stage, such system could be integrated into a worldwide book-and-claim system for SAF, which in turn could be implemented on ICAO level as it was done with CORSIA.

Moreover, such a book-and-claim system will not only assist fuel suppliers and airlines to comply with their legal requirements, it would also benefit airline customers by simplifying their environmental claims related to SAF under voluntary reporting regimes.341 If the book-and-claim system would have an interface to the RED registries of the EU member states, it would also assist the EU member states with their compliance obligations in relation to reducing the GHG emission in each member state. Moreover, a form of book-and-claim system (with traded sustainability certificates) already exists under RED (see Guarantees of Origin for bio-methane fed into the natural gas grid). Also, the Union Database for Biofuels (UDB) may assist in the establishment of

339 See supra III. 3. 0.
340 See supra III. 3. 0.
341 See, e.g., GHG PROTOCOL., supra 277.
such a book-and-claim system for SAF. The UDB was established to improve the traceability of gaseous and liquid fuels in the transportation sector (in order to avoid double counting and mitigating the risks for irregularities and fraud). Article 31a (1) of RED III states that the EC shall ensure that a Union database is set up to enable the tracing of liquid and gaseous renewable fuels and recycled carbon fuels. Moreover, Article 31a (2) elaborates further:

Member States shall require the relevant economic operators to enter in a timely manner accurate information into that database on the transactions made and the sustainability characteristics of the fuels subject to those transactions, including their life-cycle greenhouse gas emissions, starting from their point of production to the moment it is consumed in the Union. Information on whether support has been provided for the production of a specific consignment of fuel, and if so, on the type of support scheme, shall also be included in the database. Where appropriate to improve traceability of data along the entire supply chain, the Commission is empowered to adopt delegated acts in accordance with Article 35 to further extend the scope of the information to be included in the Union database to cover relevant data from the point of production or collection of the raw material used for the fuel production. Member States shall require fuel suppliers to enter the information necessary to verify compliance with the requirements laid down in Article 25(1), first subparagraph, into the Union database.

Thus, the SAF book-and-claim system could be based on the above mentioned, already existing administration infrastructures. Also other stakeholders in the aviation industry (like aircraft leasing companies and airports) have an interest in reporting emissions reductions from SAF and they would as well benefit from such a system, if the airlines could provide to them (acceptable) proof of their SAF purchases by supplying an excerpt from a central registry as proof of purchase and the associated GHG

343 Id.
345 Id.
emissions reduction. In addition, the airline can pass on such certificates showing the GHG emissions reduction to its customers (to enable Scope 3 reduction claims for passengers, freight forwarders and shippers).

Therefore, we are advocating for the swift introduction of an (at least) EU-wide book-and-claim system for SAF, administered by a governmental entity of the EU as it would allow mandatory and voluntary SAF reporting with significantly less administrative effort according to various industry standards and regulations. Second, it would improve transparency, ensure verifiability, and increase confidence in environmental claims related to SAF and thereby scaling up production and use of SAF. Last but not least, it would reduce the risk of fraud (e.g., double counting) across the system due to a chain of custody system, based on the use of unique certificates.