1-1-1994

SMU Research, Volume 2

Office of Public Affairs

Follow this and additional works at: https://scholar.smu.edu/research_magazine

Recommended Citation
https://scholar.smu.edu/research_magazine/6

This document is brought to you for free and open access by the Office of Research and Graduate Studies at SMU Scholar. It has been accepted for inclusion in SMU Research Magazine by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.
SMU Research magazine is in its second year. The first volume was well received and has helped open a window on research being conducted at Southern Methodist University. This volume introduces 10 faculty members and describes their achievements. It also provides a glimpse of graduate student research by describing the work of one student from each program in various departments.

SMU offers graduate research programs only in certain disciplines. Of the six schools-Dedman College of Humanities and Sciences, Meadows School of the Arts, the School of Engineering and Applied Science, Edwin L. Cox School of Business, the School of Law, and Perkins School of Theology—the last three are primarily professional schools. Doctoral programs are concentrated in the sciences, social sciences, and engineering. In the humanities, the doctorate is offered in religious studies and the Master’s degree in art history, English, and history. Also at the Master’s level are programs in the fine arts and communication arts. Despite the limited number of doctoral programs, most faculty members actively conduct research at SMU. The following pages provide ample evidence of their productivity.

A high point of 1994 was the $10 million gift to SMU from William C. Clements Jr., former SMU trustee and Texas governor, to establish a Ph.D. program in history and a Center for Southwest Studies. This gift recognizes the faculty strength in that department.

SMU Research will be distributed to alumni and friends who value research in a university. They have supported faculty and student research over the years. On behalf of the University, I extend our appreciation for their generosity and look forward to their continued support in the future.

U. Narayan Bhat

Dean, Research and Graduate Studies
COVER STORY

DISCOVERING THE MYSTERIES OF AGING IN THE FRUIT FLY

Experiments on genetically engineered fruit flies have led two SMU biology professors to discover what they believe is a fundamental cause of aging.

Cover photo illustration by Paul Talley

DEPARTMENTS

- Selected Faculty Books
- Graduate Student Profiles
- Faculty Recognition
- Sponsored Research Awards

FEATURES

- Teaching the Language of Dance
- Silencing Electronic Noise
- Clarifying the Theology of Paul
- Monitoring Tremors in the Nuclear Age
- Rethinking the Corporate Structure
- Expanding Corporate Technology
- Teaching Ethics to Future Leaders
- Discovering the Mysteries of Aging in the Fruit Fly
- Observing the Regulators
- Looking for the Stones and Bones of African Prehistory

TEACHING THE LANGUAGE OF DANCE

In Meadows School of the Arts, Dance Chair Jill Beck is teaching students how to read and write dance.

OBSERVING THE REGULATORS

Foreign companies interested in offering their securities for sale in the United States increasingly are seeking guidance from American securities law experts such as Marc Steinberg.

Copyright © 1995 Southern Methodist University.

Southern Methodist University does not discriminate on the basis of race, color, national or ethnic origin, sex, age, or disability.
Throughout the history of dance, its language largely has been unwritten. Imitation was the traditional way to teach and learn it. Jill Beck, 20-year chair of the Dance Division in Meadows School of the Arts, envisions dance education differently. At SMU, she is returning to the basics by teaching her students how to read and write dance.

Beck is helping to revolutionize dance instruction by using a system of symbols called Labanotation. The system enables choreographers, dancers, and teachers to record in precise terms the body's movement, direction, timing, dynamics, levels of action, placement, and rhythm. With Labanotation, dance finally has a written language that is accurate and comprehensive, Beck says.

"Labanotation can accelerate dance learning. My hope is that students will not only become movement analysts but also composers of dance," she adds.

Like music notation, Labanotation consists of a staff and symbols. The staff is read vertically, from bottom up. The symbols convey their meaning through their length, shape, shading, and place in the staff.

The implications of Labanotation are immense for dancers, choreographers, critics, and dance historians, Beck says. "Choreographers will be able to write their dance scores. Dances will be reproduced as they were conceived, rather than as they are remembered by dancers."

"Dancers will be able to read choreography and develop a performance interpretation," she adds. "They discover dance in the choreographer's own hand, rather than through a director's interpretation. The combined physical and intellectual understanding of technique should make them better performing artists."

And on the practical side, dancers and directors will not have to spend as much time in rehearsal, making the production more economical.

Beck offered the first Labanotation class at SMU in the fall semester. Using support from her students and colleagues, she hopes to create a library of notated dances that can serve as a resource for colleges and universities nationwide. With a grant from the Office of the Provost, she has begun notation work on Michele Fokine's 1910 ballet "Carnaval."

To gain perspective on the early 20th-century choreographer's technique, Beck pores over written records and photographs, watches videotape recordings of the ballet's performance, and interviews dancers who performed with Fokine. She hopes to stage it at SMU, just as she did with Nijinsky's "Apres-Midi d'un Faune" in 1989 with the Juilliard Dance Ensemble.

Under another grant from the Department of Education, Beck is directing an SMU project for Texas schools that will use the dance styles of different countries to teach social studies.

"Dancing is a technique of doing - a physical discipline," Beck says. "Labanotation has made dance an intellectual discipline as well. It has opened avenues for research and scholarship that strengthens dance's rightful place in a university."

Beck also advocates the use of instructional technology in teaching dance. With Dennis Bowers and Robert Beck in the Meadows School, she is creating a multimedia interface that combines video, graphics, audio, text, and interactive capabilities to enhance the learning experience.

"This is the future," Beck says. "Because Labanotation provides a written record of dance, it will enable us to study classical dances and dances from different countries. It also will allow us to record previously unrecorded dances. Its possibilities are endless."

Before joining SMU in 1993, Beck was chair of Connecticut College's Department of Dance, a member of The Juilliard School's faculty, and a consultant to The Hartford Ballet. She has co-directed numerous projects on dance history curriculum and has received grants from the National Endowment for the Arts, the Connecticut Council on the Arts, The National Endowment for the Humanities, and Connecticut Humanities Council.

Beck's recent staging and choreography credits include Off-Broadway productions of "Love's Labour Lost" and "Death and the Maiden." She holds a doctorate in theater history and criticism from The City University of New York (CUNY); Master's degrees from CUNY and McGill University; and a Bachelor of Arts degree from Clark University.
A new expression says, "If life gives you lemons, make lemonade," and Zeynep Çelik-Butler has incorporated that philosophy into her research. She is finding ways to use one of electronic technology's most annoying problems—low-frequency noise—to provide important data about the performance of solid-state electronic devices.

Working under a three-year grant from the National Science Foundation, Çelik-Butler is measuring low-frequency noise in the devices' metallization—the thin metal lines on a printed circuit board that conduct electricity to its components. Over time, failures occur in these boards because of electromigration, or the shifting of the metal layer's component atoms caused by electrical current.

"You want to predict that a device will last 10 years," says Çelik-Butler, associate professor of electrical engineering in the School of Engineering and Applied Science. "But at the same time, you can't actually operate it in a lab for 10 years just to be positive." Her research demonstrates that the amount of noise produced in a device corresponds to the amount of electromigration taking place—meaning that the noise measurements can be used to predict the devices' reliability. That data may be used to determine which materials provide the greatest reliability in electronic devices.

Çelik-Butler's research in the measurement and characterization of electronic noise can be traced to her graduate studies at the University of Rochester, New York. As a predoctoral fellow in programs sponsored by IBM and Eastman Kodak, she wrote her Ph.D. dissertation on low-frequency noise in semiconductor devices she has written or co-written more than 40 journal articles and conference papers since 1985.

After joining SEAS as an assistant professor in 1987, Çelik-Butler established herself through her research. In 1990 she was named the first recipient of the J. Lindsay Embrey Trustee Professorship in Electrical Engineering. That three-year professorship and corresponding one in mechanical engineering were endowed by Dallas civil engineer Embrey ('45,'47) to support junior SEAS faculty members who have demonstrated outstanding potential in teaching and research.

Çelik-Butler also maintains a long-standing interest in electronic imaging technology. As an undergraduate at Bogazici University in Istanbul, she wrote her Bachelor's thesis on the design and implementation of a video motion detection system. At SMU, she is participating in research to help create a new generation of infrared imaging devices.

Infrared-detection research has been supported by the U.S. Army's night-vision projects, which have produced high-resolution infrared cameras as those used during the Persian Gulf War. But with the recent decline in defense-related orders, the companies that developed the technology are hoping to convert to commercial use.

Çelik-Butler's research, which she is conducting with her husband, Associate Professor of Electrical Engineering Donald Butler, is geared toward making infrared technology affordable for consumer applications. Some U.S. auto manufacturers are interested in installing night-vision devices in their high-end luxury cars, an idea that brings the cost issue into sharp focus. For such a venture to be successful, the biggest factor will be the price of the finished product. Simply put, "you cannot build a $20,000 camera and put it in a $50,000 car," Çelik-Butler says.

Most state-of-the-art infrared cameras require cooling.

"and when I say cooling, I don't mean down to 0 degrees Celsius," Çelik-Butler says. "I mean real cooling— to the temperature of liquid nitrogen— to 77 Kelvin. And that's costly." To eliminate that expense, the researchers are trying to find reliable materials that work at room temperature and still are sensitive enough to do the job. The Butlers' calculations show that infrared devices built around thermal-detective, or bolometric, substances could achieve a level of sensitivity within striking distance of the ultrasensitive photon detectors currently in military use.

Unlike photon detectors, which isolate an electrical image of the object in view, bolometric detectors "sense the temperature of what they're staring at," she says. "And because infrared is basically heat anyway, [these materials] can map that out quite effectively."

It will be at least a decade, however, before these new-generation infrared cameras hit the consumer marketplace, Çelik-Butler says. Some promising thermal-detective materials are incompatible with the silicon technology used to process the electronic signals, and research into overcoming those difficulties has just begun. But when the technology does arrive, she says, "it should be inexpensive, reproducible, and it should work well."
just return the plain text representation of this document as if you were reading it naturally.

CHRISTIANS RELYING ON THE BIBLE FOR EASY ANSWERS TO SOCIAL CONFLICTS SHOULD NOT LOOK TO VICTOR FURNISH FOR SUPPORT. FURNISH, UNIVERSITY DISTINGUISHED PROFESSOR OF NEW TESTAMENT AT PERKINS SCHOOL OF THEOLOGY, HAS SPENT 35 YEARS STUDYING THEOLOGY AND ETHICS OF THE NEW TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL. THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

"THE NEW TESTAMENT AND PAUL ARE ABOUT WHAT IT MEANS TO BE A CHRISTIAN, AND THAT IS WHAT ENDURES. BUT WHAT BIBLICAL WRITERS IDENTIFY AS SPECIFIC CHRISTIAN ACTIONS CONSTANTLY MUST UNDERGO REASSESSMENT AND SOMETIMES REVISION," HE SAYS.

A PRIME EXAMPLE OF SUCH REASSESSMENT — AND ONE FOR WHICH FURNISH'S PERSPECTIVE AS A SCHOLAR OF OLD TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL, THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

CHRISTIANS RELYING ON THE BIBLE FOR EASY ANSWERS TO SOCIAL CONFLICTS SHOULD NOT LOOK TO VICTOR FURNISH FOR SUPPORT. FURNISH, UNIVERSITY DISTINGUISHED PROFESSOR OF NEW TESTAMENT AT PERKINS SCHOOL OF THEOLOGY, HAS SPENT 35 YEARS STUDYING THEOLOGY AND ETHICS OF THE NEW TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL. THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

"THE NEW TESTAMENT AND PAUL ARE ABOUT WHAT IT MEANS TO BE A CHRISTIAN, AND THAT IS WHAT ENDURES. BUT WHAT BIBLICAL WRITERS IDENTIFY AS SPECIFIC CHRISTIAN ACTIONS CONSTANTLY MUST UNDERGO REASSESSMENT AND SOMETIMES REVISION," HE SAYS.

A PRIME EXAMPLE OF SUCH REASSESSMENT — AND ONE FOR WHICH FURNISH’S PERSPECTIVE AS A SCHOLAR OF OLD TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL, THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

CHRISTIANS RELYING ON THE BIBLE FOR EASY ANSWERS TO SOCIAL CONFLICTS SHOULD NOT LOOK TO VICTOR FURNISH FOR SUPPORT. FURNISH, UNIVERSITY DISTINGUISHED PROFESSOR OF NEW TESTAMENT AT PERKINS SCHOOL OF THEOLOGY, HAS SPENT 35 YEARS STUDYING THEOLOGY AND ETHICS OF THE NEW TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL. THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

"THE NEW TESTAMENT AND PAUL ARE ABOUT WHAT IT MEANS TO BE A CHRISTIAN, AND THAT IS WHAT ENDURES. BUT WHAT BIBLICAL WRITERS IDENTIFY AS SPECIFIC CHRISTIAN ACTIONS CONSTANTLY MUST UNDERGO REASSESSMENT AND SOMETIMES REVISION," HE SAYS.

A PRIME EXAMPLE OF SUCH REASSESSMENT — AND ONE FOR WHICH FURNISH’S PERSPECTIVE AS A SCHOLAR OF OLD TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL, THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

CHRISTIANS RELYING ON THE BIBLE FOR EASY ANSWERS TO SOCIAL CONFLICTS SHOULD NOT LOOK TO VICTOR FURNISH FOR SUPPORT. FURNISH, UNIVERSITY DISTINGUISHED PROFESSOR OF NEW TESTAMENT AT PERKINS SCHOOL OF THEOLOGY, HAS SPENT 35 YEARS STUDYING THEOLOGY AND ETHICS OF THE NEW TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL. THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

"THE NEW TESTAMENT AND PAUL ARE ABOUT WHAT IT MEANS TO BE A CHRISTIAN, AND THAT IS WHAT ENDURES. BUT WHAT BIBLICAL WRITERS IDENTIFY AS SPECIFIC CHRISTIAN ACTIONS CONSTANTLY MUST UNDERGO REASSESSMENT AND SOMETIMES REVISION," HE SAYS.

A PRIME EXAMPLE OF SUCH REASSESSMENT — AND ONE FOR WHICH FURNISH’S PERSPECTIVE AS A SCHOLAR OF OLD TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL, THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

CHRISTIANS RELYING ON THE BIBLE FOR EASY ANSWERS TO SOCIAL CONFLICTS SHOULD NOT LOOK TO VICTOR FURNISH FOR SUPPORT. FURNISH, UNIVERSITY DISTINGUISHED PROFESSOR OF NEW TESTAMENT AT PERKINS SCHOOL OF THEOLOGY, HAS SPENT 35 YEARS STUDYING THEOLOGY AND ETHICS OF THE NEW TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL. THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

"THE NEW TESTAMENT AND PAUL ARE ABOUT WHAT IT MEANS TO BE A CHRISTIAN, AND THAT IS WHAT ENDURES. BUT WHAT BIBLICAL WRITERS IDENTIFY AS SPECIFIC CHRISTIAN ACTIONS CONSTANTLY MUST UNDERGO REASSESSMENT AND SOMETIMES REVISION," HE SAYS.

A PRIME EXAMPLE OF SUCH REASSESSMENT — AND ONE FOR WHICH FURNISH’S PERSPECTIVE AS A SCHOLAR OF OLD TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL, THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

CHRISTIANS RELYING ON THE BIBLE FOR EASY ANSWERS TO SOCIAL CONFLICTS SHOULD NOT LOOK TO VICTOR FURNISH FOR SUPPORT. FURNISH, UNIVERSITY DISTINGUISHED PROFESSOR OF NEW TESTAMENT AT PERKINS SCHOOL OF THEOLOGY, HAS SPENT 35 YEARS STUDYING THEOLOGY AND ETHICS OF THE NEW TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL. THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.

"THE NEW TESTAMENT AND PAUL ARE ABOUT WHAT IT MEANS TO BE A CHRISTIAN, AND THAT IS WHAT ENDURES. BUT WHAT BIBLICAL WRITERS IDENTIFY AS SPECIFIC CHRISTIAN ACTIONS CONSTANTLY MUST UNDERGO REASSESSMENT AND SOMETIMES REVISION," HE SAYS.

A PRIME EXAMPLE OF SUCH REASSESSMENT — AND ONE FOR WHICH FURNISH’S PERSPECTIVE AS A SCHOLAR OF OLD TESTAMENT, AND MORE PARTICULARLY THE LETTERS AND THOUGHTS OF PAUL, THROUGH HIS SCHOLARSHIP, HE HAS CONCLUDED THAT THOSE WHO ACCEPT THE BIBLE AS SCRIPTURE CAN FIND WITHIN IT MUCH WISDOM AND GUIDANCE FOR LIVING IN TODAY'S WORLD, BUT CANNOT FIND SPECIFIC ANSWERS FOR EVERY MODERN SITUATION.
data emerging from a seismic station near the sleepy little town of Lajitas, Texas, is providing bold answers that are being heard around the world. Through his research in seismology, Eugene T. Herrin, Shuler-Foscue Professor of Geological Sciences, has placed SMU on the map of world politics and peace in an era after the breakup of the Soviet Union.

The project combines the use of seismic principles with the technology of high-speed computers and satellite data transmission, a purpose relates to the sometimes shaky but perennial hope for an end to the buildup of nuclear arms.

Since 1981 SMU has operated a seismic station near Lajitas to support research at its Institute for the Study of Earth and Man (ISEM) on campus. Now the station houses a sophisticated monitoring system that alerts scientists to the possibility of underground nuclear weapons testing anywhere in the world.

Artificially intelligent computers enable the monitoring system to distinguish between seismic activity caused by an underground nuclear detonation and that which is caused by other sources such as earthquakes. The system mimics the way trained seismologists decide the importance and meaning of even the most subtle of seismic signals — but faster and at a lower cost.

The system’s computers automatically analyze the ground motion caused by nuclear explosions, or other seismic events, recorded by earthquake-sensing devices called seismometers that are capable of detecting motions smaller than atoms. The computers isolate ground motions most likely made by nuclear explosions from the constant stream of background noise and transmit the information almost instantaneously to a human analyst for final determination on the cause of the disturbance.

“The goal is to get to the point that the systems send you what you want to see, not every single seismic event,” Herrin says. “The global monitoring system would have to maintain a huge staff to analyze all the unsorted data coming in from the stations, and the time and expense would be prohibitive. An automated, intelligent system is the answer.”

The multinational Group of Scientific Experts is refining the technology and procedures that will make possible accurate monitoring of worldwide seismicity. The GSE is the branch of the U.N. Council on Disarmament responsible for developing technology to detect and verify seismic events such as nuclear explosions. It also provides seismic data to political agencies that enforce nuclear test ban and verification treaties.

The monitoring system being developed by Herrin and SMU colleagues, if eventually adopted by the U.N., could make it much more difficult for nations to cheat on the provisions of a treaty to prohibit nuclear explosions. “People wanting to disguise their nuclear weapons experiments can attempt to conceal the acts by coupling the explosions with an earthquake, timing them to coincide with a mining operation’s chemical explosions, or trying to prevent detection by exploding the devices in a large cavern in which air will absorb much of the explosive force,” Herrin says.

“We can tell if a blast is nuclear, however, by the seismic signal it gives off,” Herrin adds. “Because nuclear explosions spread outward from a single point like an expanding balloon, they make high-frequency compressional waves similar to sound waves. Earthquakes occur when two walls of rock tear past each other like ripping fabric, emitting low-frequency shear waves along the tear. It’s easy to differentiate between nuclear blasts and earthquakes at relatively large magnitudes. When the nuclear explosions are small, particularly below 10 kilotons, identifying them becomes more difficult. Cheating is more likely to occur with explosions below 10 kilotons, creating ground motion easier to hide within natural earthquakes and large industrial explosions.”

Since 1987 Herrin and SMU have received about $14 million in contracts from the Advanced Research Projects Agency to develop and refine the prototype system and to help devise and install a joint SMU-German advanced seismic array in Bavaria. Herrin shared management responsibilities for the Bavarian project with professor Hans-Peter Harjes of Ruhe-Universität Bochum in Germany.

The Bavarian array’s function is comparable to seismic sonograms imaging the Earth, thus enabling analysts to distinguish between seismic activity relating to nuclear tests, chemical explosions, and earthquakes. Two similar arrays are operating in Norway. An array in Germany, which transmits data via satellite to Bochum, Norway, and Washington, D.C., enhances analysts’ abilities to study seismic events originating in Europe and Asia.
Various faculty members from SMU's six schools published the following books in 1993-94.

Richard O. Mason, Management Information Sciences (with Rowe, Dickel, Mann, and Mockler).

John W. Stocum Jr., Organizational Behavior and Business Policy, the 6th edition of Organizational Behavior in a French translation - Management Des Organisations, targeted for four-year college institutions in French-speaking countries.

John E. Ubelaker, Biological Sciences, Stedman’s A.S.P. Parasite Names, Williams & Wilkins, 1993.

Fred Wendorf and Angela Close, Anthropology, Egypt During the Last Interglacial: The Middle Paleolithic of Bir Tarfawi and Bir Sabara East, Plenum Press, 1993.

For several years, the media have featured numerous stories about giant corporations in the throes of traumatic change—downsizing, divestiture, dispersal, and other drastically sounding measures intended to cut their costs or improve their profits.

Richard O. Mason believes that unless these companies make fundamental reassessments of their very structures, such measures are partial solutions at best. He explains why in Framebreak, a book whose thesis is summed up in its subtitle: "The Radical Redesign of American Business."

The book is based on research by Mason, the Carr P. Collins Distinguished Professor of Management Information Sciences in the Edwin L. Cox School of Business, and fellow authors lan I. Mitroff of the University of Southern California and Christine M. Pearson of the University of North Carolina-Chapel Hill.

"The things we've learned suggest that modern businesses must totally rethink their values, the way they're organized, and the way they operate," Mason says.

Mason, who joined SMU in 1985, often has shared his expertise with numerous companies and government agencies. He received his B.S. degree in business and technology from Oregon State University and his Ph.D. in business administration from the University of California-Berkeley. He previously has taught at the University of Arizona, USC, and UCLA.

Through their research and consultation, the authors "found several companies doing things that we believe are on the leading edge." In Framebreak, they envision a 12-step program for a new business structure based on total quality management, ethics, social and environmental service, and the recognition of employees as whole human beings.

"Many established companies were built to the specifications of the multi-divisional, or M-form, organization, the authors state. This system establishes separate divisions for each major function of the organization (such as manufacturing, marketing, or research and development). It worked well during the early part of the century, when the M-form's hallmarks—mass production, mass marketing, and mass distribution—were values with which a company could thrive and expand.

Today, the M-form organization is losing its effectiveness as product life cycles are shortened by rapid innovation and as computer manufacturing makes it possible to create increasingly specialized goods for targeted markets. On top of that, the M-form's compartmentalized structure makes it difficult, if not impossible, to adapt to the cross-disciplinary relationships that are necessary to deal with the new realities of the marketplace.

Building a new organization should be a company-wide effort, and all of its critical functions must become part of everyone's job. To this end, the authors have identified four major functions that "framebreak" organizations require.

One is a "knowledge and inquiry center" designed to gather all the intellectual assets of the organization. The next function is a "recovery center" for human resources. "When an organization goes through crises, its people become disoriented, unmotivated, burned out," Mason says. A human resource recovery center should deal with these issues in such a way that employees stay healthy enough to contribute fully to the organization.

Next, "we think there's a need for spiritual rebirth and a continual rethinking of how an organization contributes to the rest of the world," Mason says. Framebreak proposes to make social service and spirituality central elements of a company's structure and defines organizational spirituality as "a recognition that there is a connection between one's every-day affairs or business and humanity's problems."

One company that has done this is CIBA-GEIGY, a multinational pharmaceutical concern. The company's officers decided that their drugs should be available to those who need them, not just those who can afford them. Therefore, CIBA-GEIGY sells its products in Africa even though its profit margin on these sales is only 1 to 2 percent, an amount substantially below the usual return.

The last element, Mason says, is to build world-class manufacturing and service by identifying the company's main areas of expertise and establishing relationships with other companies worldwide for tasks that could be done better elsewhere.

One major obstacle to decentralization is the vested interest in the old systems. Mason says—the sense that even if something doesn't quite work, it's still safer to do things the way they've always been done. In fact, Mason agrees with that caution up to a point because, he says, the next trap is to go too far too fast. "That's what is happening in the former Soviet Union—they've uprooted everything, probably too quickly in some areas."

The benefits also are clear. "Many organizations tend to reduce their overall costs because they can eliminate divisions or levels of management, or handle more activity with less," Mason says. "They also need to be innovative, almost by definition. These companies make mistakes, but they're continually trying new ideas. And everyone is part of the process."
For 30 years, as computer companies large and small have competed to make their products
smaller, more powerful, and less expensive, discussions about microchip design and
computer arithmetic nearly always include the name of David Matula.

The MU professor of computer science and engineering has made numerous contributions in areas such as floating-point
arithmic, numeric data representation, and the way computers multiply, divide, and square roots with such alternative data representation. Matula's achievements include six U.S. patents on arithmetic computer chip design and over 30 published articles on computer arithmetic. He uses his opportunities for hardware implementation to a willing corporate sponsor and a university that recognizes technological innovation as a companion to basic research.

"By having faculty members who fill specific research needs – research at the forefront of theories for specialized technologies – SMU actually is helping the community as well as itself," Matula says.

Cyrix Corporation of Richardson, Texas, a prime example of the community benefiting from Matula's basic research in arithmetic algorithms and mathematical function computation on computers. Cyrix was founded in 1988 by two former Texas instruments employees hoping to carve a niche in the rapidly expanding field of advanced computer components.

The corporation asked Matula to consult an elite team charged with developing faster, more advanced computer arithmetic processing unit than was available for the mass market of business and home office PCs. The development team integrated several of Matula's basic arithmetic algorithms into the hardware chip. The Cyrix group also included Professor Warren Ferguson, who "skillfully transferred more complex function evaluations such as those for logarithm and trigonometric functions into hard-

ware-encoded sequences of the newly designed basic arithmetic operations," Matula says.

In a year and a half, the collaboration produced a chip that industry tests confirmed far outpaced the arithmetic performance of marketing giant Intel Corporation of Santa Clara, California. (Intel had produced the first industry-standard math co-processing unit in the early 1980s – protecting its complex innovation with a patent.) The resulting arithmetic chip was faster and more efficient than previously imagined for the vast, low-cost personal-computing market, effectively transforming the market.

For Matula, it had been an opportunity to test his theories regarding algorithms and computer mathematics. For Cyrix, it meant $25 million in revenue only one year after the introduction of the new FasMath processor – a figure that grew to $60 million the next year, which since has more than tripled.

His experiences with Cyrix have added to his own knowledge of computer systems and the way they crunch numbers, Matula says, as well as to the real-world knowledge of graduate students in his algorithm engineering and computer arithmetic classes. "The work (with Cyrix) provided a state-of-the-art implementation lab, because they asked me to develop new ideas that would be collaboratively advanced from paper designs to algorithms on silicon."

More recently, Matula and SMU have encountered another side effect from his consulting experience – the potential benefits derived from intellectual property and patent laws.

"Through my work with Cyrix, I've had to learn a lot about patents," Matula says. "The law says you can patent a process, like a chemistry, for example. You also can patent a procedure, but not a law of nature like Einstein's theory of relativity, E= mc². But in the case of a mathematical algorithm, it's very hard to get a patent. It is challenging to teach the patent examiner a new procedure for computing a result in contrast to a non-patentable formula such as quotient = dividend/divisor." Matula also notes that his service to industry has provided him invaluable experience in his current role as a member of SMU's Intellectual Property Committee. "I am committed to having this committee chart a path for a future significant source of University income through patent royalties," he says.

Matula, who joined SMU's School of Engineering and Applied Science in 1974 as then chair of the Computer Science and Operations Research Department, received a Bachelor of Science degree in 1959 from Washington University in St. Louis. He received his Ph.D. at the University of California-Berkeley in 1966 and returned to Washington University to teach computer science. He is a founding editor of Random Structures and Algorithms, and recently served on the editorial boards of Transactions on Computers for the Institute of Electrical and Electronics Engineers (IEEE) and the Journal on Computing of the Operations Research Society.
Forty million people, one-sixth of the U.S. population, are excluded from health care insurance. Another 40 million Americans are underinsured. For William F. May, the Cary M. Maguire University Professor of Ethics, the statistics not only reflect a flawed American health care system, but also present an ethical problem.

"When we exclude people from health care, they suffer a triple deprivation – the misery of illness, the desperation of little or no treatment, and the cruel proof that they do not really belong to the community," May says. "We make them strangers in their own land."

Last year, May served as a member of the Work Group on Ethical Foundations for the Clinton Task Force on National Health Care Reform. He has written widely on health care as an obligation of society to its citizens, calling it a "fundamental good." Because health care is a fundamental good, he says, the American system must offer universal access, be fair and just, be of good quality, and be responsive to choice. "Healthy children, the people's health, and therefore health care, are part of a nation's covenant with its future."

May, SMU's first University-wide endowed chair, also focuses on the ethics of other fields such as business, the ministry, the law, and the academy. He has taught courses in Dedman College of Humanities and Sciences and all professional schools, except for the School of Engineering and Applied Science, where he has occasionally lectured.

"Corporate Ethics and Social Responsibility," which May taught with other professors, discussed the role of ethics in business. When the course was first offered in 1987, May said, "People sometimes get so busy striving for their personal goals that they don't think about their responsibility to the public. Yet their decisions as business leaders have huge impacts on our common life." The important role of ethics in business and the profession's moral obligation to the community will be explored in May's fourth book, tentatively titled The Beleaguered Rulers: The Public Obligation of the Professional.

When May came to SMU from Georgetown University's Kennedy Institute of Ethics in 1985, he had published The Physicians Covenant: Images of the Healer in Medical Ethics. Since then, he has written extensively on medical ethics and published another related book, The Patient's Ordeal. Unlike other books that focus on the ethical quandaries faced by medical professionals, The Patient's Ordeal focuses on problems confronting patients and their families. The Hastings Center Report, considered the leading journal in medical ethics, has reprinted a excerpt of this book from a chapter, "The Molested." The journal also recognized May when it asked six leaders in biomedical ethics to choose an article that had the greatest personal impact on them; two chose an article that May had written.

May's expertise has been utilized by SMU both in and out of the classroom. For instance, May was a visible force on campus when the football program received the death penalty in 1986. He opened an SMU town meeting to discuss possibilities for student athletics and the University's moral obligations. At that time, May told a writer for D Magazine, "I have never seen a university go through as profound a soul-searching or a university so determined to write a new chapter in its history."

May, an ordained Presbyterian minister and former chair of the Program in the Study of Religion at Indiana University, also has taught and written extensively on ethics in religion. His articles discuss clergy ethics, theological education, and theological perspectives on medicine and other professional areas. He also has served as president of the American Academy of Religion and is a Founding Fellow of the Hastings Center, where he has co-chaired its research group on death and dying.
DISCOVERING
THE MYSTERIES
OF AGING
IN THE FRUIT FLY

BY GARY SHULTZ

The anti-oxidant defenses work
the same way in all air-breathing
species, so it is reasonable to expec
that a similar approach in
mammals would have a similar re
sult," Sohal says. "However, this
Genetic engineering procedure will
only benefit the unborn. It cannot
be performed on animals that are
already alive, because it involves the
addition of genes during the
early embryonic period."

The long-term implications of the
research include the possibility of
producing livestock and pets that
would live longer. The researchers
rule out using their findings to in
crease longevity in humans because of
ethical considerations and current limi
tations in genetic engineering.

Sohal has been a member of the SMU
biology faculty since 1969 and also has
been a senior guest scientist with the In
stitute of Physiological Chemistry at the
University of Dusseldorf and a visiting
professor in the Department of Pathology
at Linkoping University.

Before joining the SMU faculty in 1986,
Orr received a post-doctoral fellowship
from the American Cancer Society
and a National Re
search Service
Award for a four-year study at
Harvard University.

RAJ SOHAL

These are the two antioxidants that
serve as air-breathing organisms' primary
defense against free radicals, and there
fore, aging.

The two enzymes work together to
break down the radicals into water and
oxygen, thus reducing the potential for
cell damage. With more of the two anti
oxidant enzymes, the cell's defense in
creases against the aging process.

"We increased the fruit flies' defense
mechanisms by increasing their produc
tion of superoxide dismutase and cata
lase," Orr says. "This was achieved by
introducing extra copies of these genes
into embryos by microinjection. When
we engineered flies that produced extra
amounts of only one of the enzymes, it
had no effect on their life span. But flies
that produced extra amounts of both
enzymes lived one-third longer."

The fruit fly lives an average of 54 days,
but can survive as long as 71 days. The
life span of fruit flies genetically en
engineered by Orr and Sohal averaged 75
days, and some lived as long as 95 days.
The flies not only lived longer, but they
were in better physical condition and
retained their vigor longer, the re
searchers say.

The theory of aging, first proposed in
1956, suggests that when oxygen is used
by cells it produces harmful free radicals.
Molecules containing unpaired elec
trons, antioxidants, from the smallest in
sects to humans, possess defenses known
as antioxidants that protect them against
radical stress occurs when there are more radicals than antioxidants.

The theory also suggests that the nor
mal level of antioxidants in cells is not
sufficient to counteract the radicals. As a
corollary, some of the radicals escape elimi
nation by antioxidants and sometimes
cause repairable damage to cells. The
amount of permanent damage increases
over time and undercuts the organism's
strength and vitality. Although this theory
in itself has strong intuitive appeal, until now it lacked sub
stantive evidence to support it.

Sohal and Orr, faculty members in the
Department of Biological Sciences in
the SMU College of Humanities and
Sciences, have focused their attention on the
enzymes superoxide dismutase and cata

Sixty-five years after the historic stock market crash that set off the Great Depression, trade in securities such as stocks and bonds is healthier than ever in the United States.

Fortunes are made and lost by investors every day, but overall the U.S. capital markets are believed to be the safest in the world, largely because of regulatory laws enacted during the Depression, says Marc I. Steinberg, Rupert and Lillian Radford Professor of Law at SMU.

For this reason, foreign companies are increasingly interested in offering their securities for sale in the United States, and other nations trying to establish capital markets seek guidance from American securities law experts such as Steinberg.

Steinberg, who joined SMU in 1989, has traveled worldwide in the past several years to share his expertise with lawyers, bankers, regulators, students, and scholars. He recently spoke to a group of international lawyers at the International Development Law Institute in Rome about international securities laws. Previous lectures took him to the University of Konstanz in Germany; the University of Sydney and University of Melbourne in Australia; Victoria University in New Zealand; Hong Kong Polytechnic University; and an international taxation institute in Taipei, Taiwan.

"Even countries that one would think would not have capital markets are interested in developing them," Steinberg says.

And with the growing emphasis on creating a true global economy, businesses are interested in raising capital both inside and outside the borders of their home countries.

"If you can interest individuals from one part of the world in providing capital to industries in another part of the world, you're going to enable those companies as well as the affected countries and economies to grow," Steinberg says.

When this type of activity flourishes, it could contribute to a better quality of life in underdeveloped nations, he says.

The key, of course, is ensuring that the stocks and bonds being bought and sold have merit and the potential for fraud is minimized.

U.S. securities laws are considered the most stringent in the world, but also the most fair, says Steinberg, who was a lawyer for the U.S. Securities and Exchange Commission (SEC) from 1978-88.

The SEC is an independent agency of the U.S. government that was created in 1934 to protect investors in securities. It requires disclosures of the structure of companies and registration of stocks and bonds that are publicly traded. The SEC hears complaints, initiates investigations, oversees brokerage firms, and has broad powers to penalize fraud.

"The degree of protection is significant, but critics might ask whether it is at its maximum," Steinberg says.

Some regulations today are less stringent than those of 10 to 20 years ago because the government wanted to make it easier for small businesses to raise capital. This philosophy has created some reduction in regulation that might decrease protection for investors.

And changing the regulations is a delicate balancing act, Steinberg says. "A reduction in regulation may make it more difficult to detect fraud. Easing the rules can make it easier for companies to raise capital, but sufficient protection must remain in place to maintain investors' confidence."

In addition to teaching in the areas of corporate and securities law at SMU, Steinberg is the author of nine books and textbooks and approximately 100 scholarly articles.

His books include Securities Regulation: Liabilities and Remedies; Corporate and Securities Malpractice; and Securities Practice: Federal and State Enforcement. He is editor-in-chief of The Securities Regulation Law Journal and a member of advisory boards to other journals such as The Journal of Corporation Law, The International Lawyer, and The Delaware Journal of Corporate Law. He also is an adviser to the Mead Data Central/Lexis Federal Securities Law Library.
THE SAHARA DESERT IS THE HOTTEST AND DRIEST PLACE ON THE PLANET, AND YET ARCHAEOLOGIST FRED WENDORF HAS RETURNED TO IT LIKE A HOMING PIGEON FOR MORE THAN 30 YEARS TO SEEK 20TH-CENTURY ANSWERS TO ANCIENT QUESTIONS. WENDORF, HENDERSON-MORRISON PROFESSOR OF PREHISTORY IN EDMAN COLLEGE OF HUMANITIES AND SCIENCES, EXPLORES THE LIVES AND CULTURES OF PEOPLE LIVING THOUSANDS OF YEARS AGO IN RIDE NORTH-EAST AFRICA. AT 70, HE CONTINUES TO TOIL AND LABOR IN THE FIELD, PURSUING WHAT HE CALLS THE “STONES AND BONES” SIDE OF ARCHAEOLOGY.

WENDORF BEGAN HIS CAREER IN 1950 WHILE WORKING ON A PH.D. AT HARVARD UNIVERSITY, WHERE HE WAS ASKED TO DIRECT A SALVAGE ARCHAEOLOGY PROJECT ALONG A PIPELINE IN NEW MEXICO AND ARIZONA. (SALVAGE ARCHAEOLOGISTS RESCUE ANTIQUITIES FROM AREAS THAT MAY BE DESTROYED.) HIS WORK BECAME THE MODEL FOR THE NATIONAL PROGRAM FOR HIGHWAY SALVAGE ARCHAEOLOGY. LATER, HE PARTICIPATED IN THE DISCOVERY AND EXCAVATION OF THE “MIDLAND MAN” IN TEXAS, GENERALLY REGARDED AS THE OLDEST HUMAN REMAINS IN THE NEW WORLD. IN THE MID-1950S, WENDORF DIRECTED THE EXCAVATION OF FORT JUION, WHICH BECAME SMU’S RESEARCH ACTIVITY AT TAOS, AS WELL AS POT CREEK, LOCATED ON THE FORT’S PROPERTY.

HIS ASSOCIATION WITH EGYPT BEGAN IN 1962, WHEN HE WAS NAMED DIRECTOR OF THE COMBINED PREHISTORIC EXCURSION. WENDORF ORGANIZED THE EXCURSION TO SALVAGE ARCHAEOLOGICAL DATA FROM SITES THAT WOULD BE DESTROYED AFTER THE BUILDING OF THE NEW SHARM EL-SHEIKЛИN AND THE FLOODED AREA OF LAKE NASER IN EGYPT. HIS COMPANY EXPLORED THE SINES, WHERE THE GOVERNMENT PLANS TO CLEAR 450,000 ACRES OF LAND FOR FARMING AND RESIDENTIAL USES.

WENDORF ALSO IS COMPLETING A BOOK ABOUT A MAJOR FIND IN 1992 – THE DISCOVERY OF PRECURSORS TO AFRICAN AGRICULTURE IN AN 8,000-YEAR-OLD SETTLEMENT NEAR ABU SIMBEL IN SOUTHERNMOST EGYPT. ABOUT 40 VARIETIES OF FRUITS, NUTS, TUBERS, AND SEEDS, INCLUDING SORGHUM AND MILLET, WERE RECOVERED FROM HOUSES AND STORAGE PITS IN ONE OF THE DRIEST AREAS OF THE SAHARA DESERT.

THE FIND IS SIGNIFICANT BECAUSE OF THE VARIETY OF FOOD GATHERED AND STORED AT THE SETTLEMENT, WENDORF SAYS. THIS TYPE OF ACTIVITY IS SIMILAR TO THAT EXHIBITED BY OTHER SOCIETIES ON THE VERGE OF MAKING THE TRANSITION FROM A HUNTER-GATHERER TO AN AGRICULTURAL SOCIETY. PARTICULARLY IMPORTANT IS THE DISCOVERY OF SORGHUM SEEDS. ALTHOUGH THE SEEDS ARE MORPHOLOGICALLY WILD, AN EXAMINATION OF THEIR LIPIDS THROUGH INFRARED SPECTROSCOPIC ANALYSIS REVEALED THEY RESemble DOMESTICATED VARIETIES.

“IT MAY BE THAT WE HAVE FOUND THE FIRST STEPS TOWARD DOMESTICATION OF AFRICAN PLANTS,” WENDORF SAYS. EVIDENCE AT THE SITE COULD REFUTE THE BELIEF THAT AGRICULTURAL METHODS WERE INTRODUCED TO AFRICA FROM ELSEWHERE AND INDICATES THAT SORGHUM MAY HAVE BEEN DOMESTICATED 5,000 YEARS EARLIER THAN ORIGINALLY BELIEVED, HE ADDS. BEFORE THE DISCOVERY, THE EARLIEST EVIDENCE OF DOMESTICATED SORGHUM IN AFRICA WAS ONLY 3,000 YEARS OLD.

IN ADDITION TO HIS FIELD WORK, WENDORF’S SCHOLARLY ACHIEVEMENTS INCLUDE THE PUBLICATION OF MORE THAN 100 ARTICLES AND 30 BOOKS. HIS LATEST BOOK IS EGYPT DURING THE LAST INTERGLACIAL: THE MIDDLE PALEOLITHIC OF BIR TARFAWI AND BIR SABARA EAST (PLENUM PRESS, 1993), WHICH HE CO-AUTHORED WITH ROMAULD SCHILD OF THE POLISH ACADEMY OF SCIENCES AND ANGELA CLOSE, A FORMER SMU ANTHROPOLOGIST NOW AT OHIO STATE UNIVERSITY.

WENDORF CONSIDERS THE Digs VALUABLE FOR THEIR CONTRIBUTIONS TO ARCHAEOLOGY AND FOR THE EXPERIENCES HE CAN BRING BACK TO THE CLASSROOM TO SHOW STUDENTS THE PRACTICAL APPLICATIONS OF THEIR COURSE READINGS. “BY BEING ACTIVE RESEARCHERS WE STAY ON TOP OF OUR PROFESSION.”

FRED WENDORF

BEEN CONSIDERED AN ARCHAEOLOGICAL BACKWATER TODAY, HE CONTINUES TO SERVE AS THE DIRECTOR OF THE EXPEDITION, WHICH IS JOINTLY SPONSORED BY SMU, THE POLISH ACADEMY OF SCIENCES, AND THE GEOLOGICAL SURVEY OF EGYPT.

WENDORF AND HIS RESEARCH TEAM ARE CURRENTLY EXCAVATING STONE-FILLED MOUNDS IN SEARCH OF HUMAN BURIALS AT A 6,500-YEAR-OLD SITE IN THE EASTERN SAHARA TO DETERMINE HOW COMPLEX SOCIETIES BEGAN AND DEVELOPED IN THIS ARID REGION. HE ALSO IS PLANNING TO SUBMIT A PROPOSAL TO THE EGYPTIAN GOVERNMENT TO BEGIN EXCAVATION AND SALVAGE OPERATIONS IN THE SINAI, WHERE THE GOVERNMENT PLANS TO CLEAR
G R A D U A T E
STUDENT
PROFILES

The Doctor of Philosophy degree is offered by the departments of Anthropology, Biological Sciences, Economics, Geological Sciences, Mathematics, Physics, Psychology, and Statistical Science in Dedman College of Humanities and Sciences; Computer Science and Engineering, Electrical Engineering, and Mechanical Engineering in the School of Engineering and Applied Science; and the Graduate Program of Religious Studies.

Following are excerpts from research conducted by 17 graduate students during 1993-94 at SMU.

Alireza Abase, Electrical Engineering, Ph.D. student advised by Associate Professor Alireza Khorasani, is working on the dissertation "Electricity Usage Forecasting by Artificial Neural Networks." Forecast of future electricity usage by an electric utility has a significant impact on the efficiency of that utility's operation. Accurate forecasts with lead times ranging from one hour to several days potentially can save thousands of dollars for a utility through numerous methods, including reduced generator start-ups and spinning reserves.

In this research supported by the Electric Power Research Institute (EPRI), a novel forecaster based on artificial neural network (ANN) technology has been developed. An attractive property of an ANN is its function-estimation capability that enables it to model complex functions through a process of learning from examples, called training. This property is used to model complex relationships that exist between future demands and climatic factors such as temperature and humidity as well as the previous trend of demand. The developed forecaster has been implemented at more than 20 electric utilities nationwide. It has performed extraordinarily well with average errors of around 2 percent for one-day-ahead and below 3 percent for two-to-five-day-ahead predictions. With EPRI's support, this forecaster soon will be developed into a production-grade commercial product.

Brian Bachmann, Chemistry, supervised by Associate Professor John Buyuk, recently competed against graduate and doctoral students in a regional contest held in Fort Worth by the American Chemical Society. He won second place for his research project, which examines the many ways bacteria can become resistant to antibiotics. Probably the most important way is the production of enzymes that intercept and destroy the antibiotic before it can do its job. These enzymes, collectively known as b-lactamasics, cleave the carbon-nitrogen bond in the b-lactam ring present in antibiotics such as penicillins, cephalosporins, monolactams, and carbapenems. Once the b-lactam ring is opened, the antibiotic is no longer effective. The strategy is to produce compounds that inactivate the enzymes. Such compounds are known as b-lactamase inhibitors.

Dr. Buyuk conceived of incorporating an allene into a b-lactam to produce an enzyme inhibitor. They then synthesized this new class of inhibitors, which they call the 7-Vinylidene cephalosporins. Kinetic evaluation of these compounds reveals that some are more potent than several commercial inhibitors. This research demands a mastery of synthetic organic chemistry, identification techniques, and knowledge of protein science and enzyme kinetics.

Steven D. Balsley, Geological Sciences, is a teaching assistant and an associate researcher for SMU's Stable Isotope Laboratory. He has several publications to his credit. He provides the following account of his dissertation research:

"In the geological past, large, long-lived continental volcanic centers commonly generated cataclysmic eruptions (>10² km³). 400% greater than the 1980 Mount St. Helens' eruption), that imply the existence of very large upper crustal magma chambers. The deposits from such large eruptions preserve the instantaneous characteristics of crustal magma chambers. However, small-scale, post-cataclysmic eruptions (<10¹ km³) often record magmatic evolution over a short time period, and such provide means of understanding rates of magmic evolution and supply. Do post-cataclysmic eruptions reflect the continued evolution of single, large crustal magma chambers that are tapped by multiple vents, or new pulses of magma emplaced into separate, discrete chambers? A sequence of small-volume (25-50 km³) eruptions (>100x Mount St. Helens), post-cataclysmic volcanic deposits that erupted 29 million years ago in the San Juan Mountains in southeastern Colorado contains strongly heterogeneous, quenched magma compositions that can have originating only from multiple, independent magma chambers. From these new data, emplacement, differentiation, and crystallization of magma bodies occur in the upper crust over rapid geologic timescales (1,000-10,000 years).

These results have implications for volcanic hazard assessment in large, active volcanic centers such as Yellowstone National Park (United States), Taupo (New Zealand), and the Phlegraean Fields (Italy)."
United States spend 33 percent of their discretionary time working for wages in the market sector and 28 percent on non-wage household production." Basu plans to examine how household production affects the business cycle fluctuations.

In the second part, Basu is studying the role of non-traded goods in explaining business cycles in an open economy. "Traditionally the construction industry, utilities, etc., are considered to be part of the non-traded sector. The cyclical fluctuations affect traded and non-traded goods sectors differently. Also for traded goods, cyclical fluctuations get propagated from one country to another very quickly. When actual cyclical fluctuations in OECD countries are studied, economists have found cross-country correlation of consumption is low and that of output is high. The existing models fail to capture this behavior of output and consumption." Basu wants to discover whether including non-traded goods explicitly helps to solve this problem.

Yuan-Song Chen, Computer Science and Engineering, who in 1993 earned his Ph.D. under the direction of Associate Professor Murat M. Tanik, a post-doctoral fellow at SMU. His research interests include software metrics, software reuse, user interface, and software engineering. In a dissertation titled "A Quantitative Software Reuse Framework," Chen used an axiomatic approach to study the nature of software entities. Based on this axiomatic framework, he extended the study to the issues in quantitative reuse. He published his results in focus IEEE conferences and other journals. Guided by his theoretical results, Dr. Chen proposed a software reuse model, CASOR, which stands for CASE-driven Software Reuse. The model utilizes the concepts from the traditional 'programming by example' in artificial intelligence and "component-based reuse" and component composition from software engineering. It is expected that his results will be useful for the development of cost-effective and reliable software. Chen has authored seven technical papers and three proposals. One of the proposals, "A Test Data Driver approach for Software Development," has been accepted by the U.S. Army to explore the automatic reuse of components by utilizing test data.

Jane Seaman Hansen, Psychology, received her B.A. in psychology from SMU in 1989. She joined Personnel Decisions Inc., where she applied her knowledge of psychology to the business world. In 1992 she returned to SMU to pursue a Ph.D. in experimental social psychology. Her research involves nonverbal correlates of leadership emergence in small groups. Hansen reported on some of her collaborative work on nonverbal behavior at the 1994 meeting of the Midwestern Psychological Association in Chicago and at the Texas Conference on Social Psychology in El Paso. A report of this work, co-authored with Associate Professor Diane Berry and graduate students Jo Meier and Julie Pester of the Psychology Department, will appear in an upcoming issue of the Journal of Nonverbal Behavior.

Rose Jones, Anthropology, went to St. Lucia, a small island in the eastern Caribbean, in 1989 to conduct research on gender and sexuality for her doctorate. She recounts part of her experience:

"As I settled into the rhythm of island life, I came like all members of St. Lucian society to have an ascribed and socially sanctioned identity. In the village where I lived, I became known as 'un ti madame' or 'the little woman.' Although I was told that I was 'little woman' because her 'breasts so small,' 'little woman' was actually a euphemism for expressing my perceived social and reproductive status. Because I did not have any biological children, a deviant role for women, but because I was legally married, an indicator of high status, the ambiguous title of 'little woman' was bestowed upon me.

"Following this lead, I discovered that St. Lucians routinely categorize individuals by collectively assessing their perceived social, economic, sexual, and reproductive roles. They separate men and women to such categories because of their understanding of the ways in which gender roles and relations are intended to transpire. Heterosexual relations are predicated on prescriptions of gender interdependency. Men and women generate and secure economic resources through each other by forming and sustaining sexual and reproductive alliances. The research that I conducted illustrates how critical it is that researchers establish a culturally relativistic understanding of sex and sexuality, one within the context of the gender system.

"Having recently completed my Ph.D., I plan to use the data and insights I gained in St. Lucia to promote a scholarship that is not only cognizant of women, but also sensitive to cultural diversity. Such an approach will positively alter research on a wide array of sexual issues, including HIV/AIDS."

Kiranjit Kaur, Biological Sciences, entered the Ph.D. program in 1987 after earning a B.A. degree in biology from Blackburn College and an M.S. degree in biochemistry from the University of Kentucky. She was an author on eight articles published in a variety of journals. Kaur, who earned her Ph.D. in May 1994, is continuing her research on cellular signaling in the unicellular algae, Chlamydomonas, as a post-doctoral fellow at the University of Texas Southwestern Medical School.
Kaur's dissertation examined the mechanisms by which the pathogenic protozoan, Trypanosoma brucei, regulates its complex life cycle. She tested the hypothesis that calcium signals were utilized by T. brucei to coordinate life cycle events by demonstrating that trypanosomes contain proteins that are capable of changing their activity in response to calcium. Calmodulin is a calcium-binding protein that regulates a wide range of cellular activities in mammalian cells. Kaur used a combination of anion exchange and affinity chromatography to purify a subset of calmodulin-binding proteins (CaMBPs) from T. brucei. Monoclonal antibodies were raised against the complement of CaMBPs, and a hybridoma was obtained that recognized a 53 kDa CaMBP. Immunoblots were used to verify that the 53 kDa protein interacted with calmodulin in a calcium-sensitive manner. The antibodies were used to screen a cDNA library of T. brucei, and a cDNA was obtained that encoded a protein with 81 percent identity to elongation factor-1 alpha (EF-1 alpha). Chemically derivatized calmodulin was used to demonstrate that EF-1 alpha from the mammalian host also bound to calmodulin.

Kaur's research has broad impact because she is the first person to prepare monoclonal antibodies against EF-1 alpha, and this reagent is proving useful to a number of laboratories. Kaur also is the first researcher to demonstrate a direct interaction between calmodulin and components of the protein synthesis machinery.

Melanie McGarrahan, English, plans to enter a Ph.D. program in English when she completes requirements for the M.A. An honors graduate of Baylor University with a major in foreign service, McGarrahan worked as a legal assistant and office manager for a Dallas attorney before deciding to pursue a career in teaching English at the college level. SMU's Master's program in English provides students such as McGarrahan with an opportunity to enhance their academic preparation and credentials for admission to a nationally recognized Ph.D. program. McGarrahan has served as editorial assistant to Associate Professor Bonnie Wheeler, editor of The Journal of Arthurian Interpretation. As a Teaching Fellow, McGarrahan will teach one section of composition each semester, as well as add to the interpretation of Arthurian materials in her Master's thesis.

James McMillin, History, a second-year graduate student under the direction of Professor David Weber, is researching the late 19th- and early 20th-century Borderlands and Mexico. His thesis explores the changing relationship of American Methodist missionaries and the people of Mexico. Specifically, he examines the missionaries' views of the Mexican people. For the period 1830-1860, McMillin has determined that the missionaries held the same ethnocentric notions as the majority of white Americans—that the Mexican people were a "deficient" race, with their culture offering proof of their inherent deficiency. By the 1880s, however, documents such as the annual conference reports of Methodist missionaries, autobiographies, and personal correspondence suggest that this view had changed. The missionaries eventually regarded Mexicans as worthy of proselytizing, and itinerant networks of Methodist societies and churches were established. Upon his graduation, McMillin began work in the doctoral program at Duke University. Studying under the direction of Peter Wood, a renowned American historian, McMillin plans to explore the Mexican view of the missionaries for his dissertation.

James W. Miller, Statistical Science, is a Ph.D. student and recipient of the 1993 George Polya Award for a paper he co-authored, "A Random Ladder Game: Permutations, Eigenvalues, and Convergence of Markov Chains," that was published in College Mathematics Journal. Miller's abstract for his dissertation on the topic "Forecasting with Fractionally Differenced Time Series Models" summarizes his current research: "Long-memory time series models are statistical models for data measured over time, in which the correlation between variables separated by large time intervals remains non-negligible for very large lags. These models have applications in many areas of the natural sciences and economics. One of the most significant of these models is based on fractional differencing. We examine five procedures for forecasting based on the fractional models that have been proposed in recent literature. We compare and contrast their procedures with respect to their asymptotic behavior and the mean squared errors. We place special emphasis on best linear predictors, deriving the forecast function explicitly in this case, making it possible to compute forecasts without using computationally intensive recursive procedures. Finally, we show how these procedures can be extended to forecasting non-stationary fractional processes and more general processes, that model both long- and short-memory effects simultaneously."

Augustyn Gryziński, Computer Science and Engineering, received a Ph.D. degree in Mathematics from Adam Mickiewicz University in Poland in 1979. He also taught and conducted research at the university's Institute of Mathematics. In 1986 he received the Banach Award from the Polish Academy of Sciences for his work in functional analysis. In 1989 he entered SMU's Ph.D. program in Operations Research. Since 1991 he has worked under the supervision of Assistant Professor Yanjun Zhang on parallel computation and optimization problems. He defended his dissertation on "Implementation and Analysis of Parallel Backtrack Search" in May 1994 and graduated in August. Last summer he continued his work on parallel computation using CM-5 and Gray T3D machines.

Don T. Smith, Religious Studies, is researching the religious thought of 17th-century philoso-
Duke University. Thomas has begun work on a Ph.D. at the University of Texas at Austin studying the iconography of sexuality in Roman art while pursuing his interest in NeoAmerican iconography. At SMU Thomas worked as an assistant curator for an exhibition of John Michel Baskiat’s works at the Dallas Museum of Art, for which he wrote the brochure. He also spent two summers excavating with Professor Gregory Warden in Tuscany and participated in the Maya Glyph Seminars at the University of Texas. His M.A. thesis, “Sexuality and Generation in the Tomb of the Bulls: Rites of Passage in Archaic Tomb Painting,” examines the problematic “erotic” scene in the Etruscan Tomb of the Bulls at Tarquinia. It categorizes iconographic scenes of sexuality in Etruscan art, considering the influence of Greek art, especially painted vases. It explains some scenes of sexuality in Etruscan tomb painting as representative of the roles that are inherent within sexual acts, particularly the roles of the dominant and the submissive; and it proposes that the “erotic” scene in the Tomb of the Bulls represents, at least thematically, a Dionysian ritual that metaphorically represents the passage into the afterlife and the regeneration of the deceased.

Igor Volobouev, Physics, a second-year graduate student, studies properties of the heavy lepton tau using the CLEO detector at the Cornell Electron Positron Storage Ring. Tau is one of the fundamental particles of matter that is very heavy, has a short lifetime, and decays into many different objects. The properties of tau and its decay rates are predicted by present-day theory with a very high precision, and an observation of any deviation from the expectations would indicate existence of a new physics process that has been unsuspected until now. Volobouev searched for such unexpected decays of the tau lepton into three charged particles among the high statistics data collected by CLEO. The search confirmed that if new types of forces and elementary interactions exist, they must occur only at very high energies not accessible at present-day accelerators. The results of Volobouev’s study were presented at the 1994 meeting of the American Physical Society in Washington, D.C., and have been submitted for publication in Physical Review Letters.

Ana Witt, Mathematics, completed her Ph.D. in May 1994 and joined Austin Peay State University (Clarksville, Tennessee) as an assistant professor of mathematics. Her research focused on the topic that phenomena in science and engineering that evolve in time are modeled by differential equations. Numerical methods are used to study the models when the equations are too complicated to analyze. There are powerful, general-purpose codes available for the numerical solution of ordinary differential equations. They simulate the continuous time evolution of a model by producing approximate solutions at discrete times. As they advance from an approximation at one instant to the next, they estimate the error of the step to gain some confidence in the numerical solution. With an estimate of the error, it is possible to control the error by adapting appropriately the same step. In addition to improving the reliability of the simulation, this often reduces the cost substantially. One part of the research by Witt and her adviser, Professor Lawrence F. Shampine, provides a deeper understanding about why controlling the error makes popular codes respond in a satisfactory way when presented problems for which they are not intended. Another justifies a scheme for adapting the time step used by physical scientists and provides the understanding needed for its effective use.
The following SMU faculty members were recognized for their teaching, scholarship, or research during 1993-94.

Alan Albarrán, Communication Arts, was elected president of the Texas Association of Broadcast Educators and chair of the Mass Communication Division of the Southern States Communication Association.

Randolph Beatty, Accounting, was cited by Business Week magazine as being recognized by M.B.A. students as one of the 12 best teachers in business education nationwide.

Patricia Davis, Theology, received the Sam Taylor Fellowship and Perkins Scholarly Outreach Award for work on the spirituality of adolescent girls.

Timothy Davis, Law, received the 1994 Golden Mustang Award, which recognizes outstanding faculty members involved in curriculum for instructional development.

Maurice Elton, French, was promoted to the rank of Officer, the Second Level of the Order of La Legion Violette, France’s most prestigious award for service to French education.

Danna Nolan Fewell, Theology, received the Junior Scholar Research Award from the Southwest Commission on Religious Studies in 1993 and the Lilly Endowment Faculty Outreach Award at SMU in 1992.

David Freidel, Anthropology; Louis Jacobs, Geological Sciences; and Alan Bromberg, Law, were honored for their outstanding research, publications, and teaching at the 1994 Authors’ Award Luncheon in April. The awards are sponsored by the Godbey Lecture Series (formerly University Lecture Series) of Dedman College of Humanities and Sciences. Freidel, who conducts archaeological excavations at Mayan sites in the Yucatan, Mexico, is co-author with Linda Schle and Joy Parker of Maya Cosmos: Three Thousand Years on the Shaman’s Path. William Morrow and Co., Inc., 1993. In this book, they examine the cosmological roots of Mayan culture. Jacobs is the author of Quest for the African Dinosaurs: Ancient Roots of the Modern World, Villard Books, 1993, in which he chronicled his field work in the Republic of Malawi. Jacobs also is director of SMU’s Shuler Museum of Paleontology. Bromberg has written extensively about partnership law, including the most recent books, volumes III and IV of Bromberg and Ribstein on Partnership Law, Little, Brown, and Co., 1994. These volumes are the first comprehensive exploration of the law of limited partnerships.

Victor Paul Furnish, Theology, received the 1993-94 University Scholar/Teacher of the Year Award from the Division of Higher Education of the United Methodist Church, and the 1994 Alumni Award for Faculty Excellence.

Richard F. Gunst, Statistics, received the 1994 American Statistical Association Award for the Most Outstanding Statistical Application. The same article received the Wilcoxon Award from Technometrics.

Narayan Hosmane, Chemistry, is the recipient of the 1994 Mother India International Award, given by the NRI Institute of India to honor Indian achievers.

Robert Van Kemper, Anthropology, was named editor of the journal Human Organization.

Jose L. Lage, Mechanical Engineering, received the 1994 Outstanding Research Award from Sigma Xi – The Scientific Research Society, for his contributions to the field of transport phenomena in porous media.

David T. Lei, Organizational Behavior and Business Policy, has received the Strategic Management Prize from The Long Range Planning Journal for his article, “Offensive and Defensive Uses of Alliances,” as the best article published during 1993.

David McCall, Communication Arts, was named the 1994 Distinguished Teacher by Meadows School of the Arts and the nation’s Outstanding Journalism Professor by the Society of Professional Journalists.

Montie Monzingo, Mathematics, was named the 1994 Distinguished Teacher by the Texas Section of the Mathematical Association of America.

Jack Myers, English, won the Natalie Ornish Peace Award, in Memory of Wayne Gard, for his book, Blinded.

Simon Sargen, Music, received the 1994-95 ASCA Award, given by the American Society of Composers, Authors, and Publishers. He also won first prize in the 1993 NATS Song Competition for his composition of Waves of the Sea, a cappella six songs set to works of Irish poets.

Willard Spiegelman, English, received a 1994 fellowship from the John Simon Guggenheim Memorial Foundation. Of the 147 fellowships awarded throughout the nation this year, Spiegelman is one of only four grant recipients in Texas.

Marshall Terry, English, received the 1994 Faculty Award for Outstanding Service to Alumni from the SMU Alumni Association.

Fred Wendorf, Anthropology, received the 1993 SMU Alumni Association’s Award for Faculty Excellence.

FACULTY RECOGNITION
During 1993-94, sponsors awarded $7,206,420 to SMU, or direct and indirect costs of research and sponsored projects conducted by 3 faculty and 8 staff members. The dollar value of awards decreased slightly from the $7,308,881 received in 1992-93, and the number of awards processed decreased from 136 to 107. Awards include grants, contracts, and extensions and modifications of existing grants and contracts.

Sponsors of the $7,206,420 were agencies of the federal government, 70 awards, $5,102,153 (70.8%); corporations, 12 awards, $376,223 (5.2%); state and local government agencies, seven awards, $902,334 (12.5%); and foundations and other, 18 awards, $825,710 (11.5%).

Dedman College received $5,106,381 in 70 awards, Division II, Natural Sciences, was awarded $3,881,779 in 53 awards; Division II, Social Sciences, $1,137,300 in 16 awards; and SEM, $503,022 in one award. In 1992-93, Dedman College received $6,214,075. The School of Engineering and Applied Science received 1,788,143 in 29 awards during 1993-94, compared with $954,681 in 1992-93. The Law School, 113,888, Meadows School of Fine Arts, 9,000, and Cox School of Business, 31,741 received one award each. There were 130 other awards totaling $160,366.

Following is a list of principal investigators for project directors who received aggregate awards of $50,000 or more.

William Asham, Theology, The Pew Evangelical Scholarship Program, $100,000, Pew Memorial trust.

Richard By, Computer Science and Engineering, benchmarking and Performance Improvement Tools for Manufacturing and Service Processes (year 1 of 3), $65,094, National Science Foundation.

David Blaswell, Geological Sciences, Thermal Regime of sedimentary Basins, $10,000, Mobile Foundation Inc.; Geothermal Resource Evaluation Based on Heat Flow and Thermal Conductivity Data for the United States, $50,000, EG&G Idaho Inc.

Jerome Butler, Electrical Engineering, PILOT VI, $29,999, Millimeter Software Development, Part Two, $50,000.

John Buynak, Chemistry, Rearrangement of Functionalized Organosilanes (year 3), $50,500, Welch Foundation; Allenes of Synthetic and Biochemical Importance, $80,480, National Institutes of Health.

Zeynep Selik-Butler, Electrical Engineering, Low-frequency Noise Measurements as a Characterization and Testing Tool in Solid-State Devices (year 2 of 2), $100,965, National Science Foundation.

Thomas Edwards, Teacher Preparation, Upward Bound (year 3 of 3), $259,704, Department of Education.

Margaret Eich, Computer Science and Engineering, In Memory Database Recovery Issues: REU Supplement, $8,000, National Science Foundation; In Memory Database Recovery Issues (year 2), $64,999, National Science Foundation.

SPONSORED RESEARCH AND PROJECTS

<table>
<thead>
<tr>
<th>Proposal and Award Number</th>
<th>Proposal and Award Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>$45</td>
<td>$200</td>
</tr>
<tr>
<td>$40</td>
<td>$175</td>
</tr>
<tr>
<td>$35</td>
<td>$150</td>
</tr>
<tr>
<td>$30</td>
<td>$100</td>
</tr>
<tr>
<td>$25</td>
<td>$75</td>
</tr>
<tr>
<td>$20</td>
<td>$50</td>
</tr>
<tr>
<td>$15</td>
<td>$25</td>
</tr>
<tr>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>$5</td>
<td>$5</td>
</tr>
</tbody>
</table>

Parasketos Evgiopulos, Computer Science and Engineering, Research Initiation Award: Massively Parallel Processing Based on the Decoupled Synchronization Computation Model of Execution, $96,328, National Science Foundation.

David Freed, Anthropology, Yaxuna Research Project, $92,267, Selz Foundation.

Herbert Haas, ISEM, Core Support for Archaeometric Service of a Radiocarbon Dating Facility (year 3), $87,302, National Science Foundation.

Eugene Herrin, Geological Sciences, The Role of Near-source Phenomenology on Regional Seismic Observations (year 2), $59,339, Air Force; Pakistan Incremental Array, $400,000; Project X: Research In Mini-array Technology, $200,000, Advanced Research Projects Agency; Seismic Studies: Cost Growth, $18,865, Advanced Research Projects Agency.

Richard Jones, Biological Sciences. Polycomb-group Genes and Gene Regulation (year 3 of 5), $137,421, National Institutes of Health.

Michael Lattman, Chemistry. Fundamental Studies on “Hypervalent” Main-Group Elements Constrained by Macrocycles, $25,000, American Chemical Society. Materials and Catalytic Chemistry of Cyclic Oxygen and Nitrogen-stabilized Main Group Element Derivatives (year 3), $30,500, Welch Foundation. High-Coordinate Main-Group and Main Group d-Block Metal Chemistry, $45,000, National Science Foundation.

Victoria Lockwood, Anthropology. The Effects of Capitalism on Rural Tahitian Women, $121,977, National Science Foundation.

David Moldovan, Computer Science and Engineering. Research and Development of Semantic Network Array Processor, $85,000, National Science Foundation.

Frederick Moss, Law. Law School Clinical Experience, $113,888, Department of Education.

William Pulte, Anthropology. Master’s Program Leading to Endorsement in Bilingual Certification, $141,610, Department of Education.

Timothy Slater, Biological Sciences. Molecular Genetics of Insect Steroidogenesis (year 1 of 3), $70,000, Department of Agriculture.

Ryszard Steynowski, Physics. Research in Experimental and Theoretical High Energy Physics, $509,000, Department of Energy.

Vic Teplick, Physics. Personnel Assignment Agreement, $50,996, Universities Research Association Inc.

Fred Wendorf and Angela Close, Anthropology. A Proposed Study of the Late Neolithic in the Egyptian Sahara, $103,909, National Science Foundation.

Patty Wissian-Neilson, Chemistry. Poly(alkyl/arylphosphazene) Copolymers (year 2 of 3), $30,500, Welch Foundation. Synthesis and Characterization of Poly(arylphosphazenes) and Their Derivatives (year 3), $65,999, Texas Christian University/ARO.

Compiled by Larry Smith
Director of Research Administration
VOLUME 2 1994

The SMU Research magazine is produced annually by the Office of Public Affairs for the Office of Research and Graduate Studies of Southern Methodist University. Please send correspondence to Office of Research and Graduate Studies, Southern Methodist University, PO Box 750240, Dallas, TX 75275-0240, or call 214-768-4345.
E-mail: bphillip@sun.cis.smu.edu

OFFICE OF PUBLIC AFFAIRS
Editor: Susan White
Art Director: Victoria K. Olvera
Designer: Rebecca Brown
Photographers: Hillsman S. Jackson, Paul Talley, Doug Hopfer

OFFICE OF RESEARCH AND GRADUATE STUDIES
Contributors: Barbara Phillips, Larry Smith

CORPORATE OFFICERS OF THE UNIVERSITY
James E. Kirby Jr., President ad interim
William S. Babcock, Provost and Vice President for Academic Affairs ad interim
S. Leon Bennett, General Counsel, Vice President for Legal Affairs, and Secretary
James E. Caswell, Vice President for Student Affairs
William H. Lively, Vice President for Development, Alumni Relations, and Public Affairs
Elizabeth C. Williams, Vice President for Business and Finance, and Treasurer

ACADEMIC DEANS
U. Narayan Bhat, Dean of Research and Graduate Studies
David H. Blake, Dean of Edwin L. Cox School of Business
Carole Brandt, Dean of Meadows School of the Arts
James F. Jones Jr., Vice Provost and Dean of Dedman College of Humanities and Sciences
Robin W. Lovin, Dean of Perkins School of Theology
C. Paul Rogers III, Dean of School of Law
André G. Vacroux, Dean of School of Engineering and Applied Science