Civil Aircraft Emissions and International Treaty Law

Heather L. Miller

Recommended Citation

This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.
CIVIL AIRCRAFT EMISSIONS AND INTERNATIONAL TREATY LAW

Heather L. Miller*

TABLE OF CONTENTS

I. INTRODUCTION .. 698
II. GLOBAL WARMING 699
 A. SCIENCE .. 699
 B. POLICY .. 701
III. AVIATION SECTOR 702
 A. DISTINGUISHING CHARACTERISTICS OF THE
 SECTOR .. 702
 B. GROWTH .. 703
 C. EMISSIONS 704
IV. CHICAGO CONVENTION 705
 A. BILATERAL AIR TRANSPORT AGREEMENTS 707
 B. INTERNATIONAL CIVIL AVIATION ORGANIZATION 708
 C. CHICAGO CONVENTION TODAY 711
V. ICAO AND THE ENVIRONMENT 712
 A. HISTORY OF INVOLVEMENT 712
 B. ANNEX 16 713
 C. RECENT ACTIVITY OF THE ASSEMBLY 715
VI. 1992 U.N. FRAMEWORK CONVENTION ON
 CLIMATE CHANGE 716
 A. HISTORY OF NEGOTIATIONS 716
 B. OBJECTIVE AND GENERAL COMMITMENTS 716
 C. FCCC INSTITUTIONS 719
 D. CONFERENCE OF THE PARTIES 719
 E. KYOTO PROTOCOL: INTERNATIONAL
 RECOGNITION OF THE UNIQUE NATURE OF
 AVIATION 721

* Heather L. Miller practices aviation and environmental law in Washington, D.C. Ms. Miller graduated with honors from the University of California at Berkeley and received her J.D. from the University of Virginia. The views expressed here are solely those of the author.
I. INTRODUCTION

Although aircraft are small contributors to the problem of global warming, stricter limits on aircraft emissions will soon be in place. Prior to the Kyoto Protocol, two United Nations organizations were vying for the right to regulate aircraft emissions: the United Nations' Framework Convention on Climate Change (FCCC) and the International Civil Aviation Organization (ICAO).

The Kyoto Protocol, the treaty arising from the FCCC's meeting in December 1997, makes clear that ICAO is, and will be, the principal forum to pursue the subject of greenhouse gas emissions from international civil aviation. However, the question of whether ICAO is the forum for addressing greenhouse gas emissions from purely domestic flights remains open.

Successful global limitations of greenhouse gases will be best achieved through international agreements that are narrowly tailored to fix the problem they seek to address. A specific, prescriptive, and quantitative approach is necessary to limit aircraft emissions successfully. In theory, a comprehensive solution

2 The Kyoto Protocol expressly recognizes ICAO as the global organization responsible for the reduction or limitation of international aviation emissions. See id. art. 2(2), at 9.

such as the FCCC’s flexible and general approach, covering all emissions of greenhouse gases, is appealing. In practice, however, scientific uncertainty, informational problems, and difficulties with enforcement make the FCCC a sieve rather than a bar to emissions.

Control of aviation emissions is best conducted at the international level by an organization with technical expertise over both aviation and aircraft emissions. The United Nations’ specialized agency that manages worldwide civil aviation issues, including emissions, is ICAO. The agency has a proven record of leadership in regulating aircraft emissions and has developed a substantial base of technical, safety, and operational knowledge.

In presenting the treaty framework that limits or reduces aircraft emissions, this Article first provides an overview of the science and policy surrounding global warming. It then examines the aviation sector, focusing in particular on the Chicago Convention, which created ICAO, and on ICAO’s environmental activities. Next, it examines the FCCC’s history and the recently adopted Kyoto Protocol. Finally, the Article argues that emissions of greenhouse gases from civil aviation are better handled by ICAO than by the FCCC.

II. GLOBAL WARMING

In recent years, global warming has drawn the world’s attention. Science, albeit uncertain, suggests that dramatic changes to our climate may occur if greenhouse gas emissions are not curbed. In fact, scientists predict that rising global temperatures could affect agricultural activities worldwide; lead to Dust Bowl conditions; cause the sea level to rise and flood coastal areas; disrupt fisheries; alter some plant and animal species; and lead to record heat waves and other weather abnormalities that could harm people, crops, and forests.5

A. SCIENCE

Greenhouse gases occur naturally in the atmosphere, allowing sunlight to reach and warm the Earth’s surface. But unlike

other atmospheric gases, they trap heat in the atmosphere. This natural warming of the Earth’s atmosphere and surface is called the “greenhouse effect.” Burning fossil fuels, deforestation, and use of nitrogen fertilizers and chlorofluorocarbons (CFCs)\(^6\)—all generate human-caused, or anthropogenic, emissions—increase substantially the natural concentrations of greenhouse gases, also increasing trapped heat.\(^7\) In 1995, the Intergovernmental Panel on Climate Change’s Second Assessment Report, for the first time, supported the proposition that “[t]he balance of the evidence . . . suggests a discernible human influence on global climate.”\(^8\)

The key anthropogenic greenhouse gases are carbon dioxide (CO\(_2\)), methane (CH\(_4\)), nitrous oxide (N\(_2\)O), chlorofluorocarbons (CFCs), and tropospheric ozone (O\(_3\)).\(^9\) Carbon dioxide emissions, resulting from the consumption of fossil fuels, have been responsible for more than half of the enhanced greenhouse effect.\(^10\) Carbon monoxide (CO) and nitrogen oxide (NO\(_x\)) are not greenhouse gases, but these two gases indirectly affect the climate because they chemically interact with other gases.\(^11\)

Scientific and socioeconomic uncertainties make the effects of global warming difficult to predict. Scientists agree that increases in greenhouse gases will result in climate change, but they disagree about the magnitude, timing, and regional distribution of the warming.\(^12\) In addition, lack of scientific understanding about some of the greenhouse gas sources and the processes that influence their atmospheric concentrations ren-

\(^6\) The production and use of CFCs are limited by the Montreal Protocol on Substances that Delete the Ozone Layer (Montreal Protocol). Discussion of CFCs and the Montreal Protocol are not within the scope of this Article.

\(^7\) See OTA REPORT, supra note 4, at 3; Climate Change: The IPCC Scientific Assessment, Intergovernmental Panel On Climate Change, WMO/UNEP at xi (1990) [hereinafter IPCC Scientific Assessment Report].

\(^9\) See OFFICE OF POLICY, PLANNING, AND EVALUATION, UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, 2IP-2003.1, POLICY OPTIONS FOR STABILIZING GLOBAL CLIMATE CHANGE: REPORT TO CONGRESS, MAIN REPORT I-1 (1990) [hereinafter EPA REPORT].

\(^10\) See id. at V-7.

\(^11\) See id. at IV-45.

\(^12\) See id. at I-1.
ders projections of global warming incomplete.13 For instance, there is scientific uncertainty about the "uptake of heat and CO\textsubscript{2} by the ocean and any other sinks, geophysical and biogeochemical feedback mechanisms, and natural rates of emission of the greenhouse gases."14 And, there is socioeconomic uncertainty about "population growth, GNP growth, structural changes in economic systems, rates of technological change, future reliance on fossil fuels, and future compliance with the Montreal Protocol."15

Aircraft contribute approximately two to three percent of the total anthropogenic CO\textsubscript{2}. Although the aviation sector thus seems responsible for only a small portion of total anthropogenic emissions, some scientists believe that because aircraft emissions take place at a high altitude they might have a disproportionate effect on the atmosphere.16 Further, the continuing rapid growth of air transport services makes aircraft emissions an important global issue. An Environmental Defense Fund study found that the combined effect of CO\textsubscript{2} and NO\textsubscript{x} emissions from aircraft could account for up to ten percent of all human-induced climate change in the latter part of the twenty-first century.17

\textbf{B. Policy}

Policy issues raised by global warming are just as complex and vexing as the scientific issues. For instance, limiting current greenhouse gas emissions would likely decrease the magnitude and speed of global warming; however, scientific uncertainties relating to global warming make it difficult for policymakers to determine the correct course. Given the long-lasting consequences of decisions made today, great care and attention need to be paid to how emissions' abatement is structured.

Furthermore, taking action to limit global warming involves making tough political decisions. Emissions' abatement forces policymakers to balance the long-term effects of altering the

14 EPA Report, supra note 9, at I-12.
15 Id.
17 See EDF Study, supra note 3.
human environment against the exorbitant short-term costs of abating emissions. For instance, William Nordhaus, an economist from Yale University, estimates that limiting U.S. greenhouse gases could cost as much as $7 trillion.18

Finally, policymakers need to take into consideration the problem's global scope, and seek international solutions to reduce greenhouse gases. Both developed and developing countries need to take action. Developing countries, as they continue to industrialize, are expected to increase their CO\textsubscript{2} emissions, further exacerbating global warming.

In response to these concerns and pressures, policymakers have been working to reduce global greenhouse gas emissions. It is good that they do so because they cannot afford to wait to see what the full impact of continued emissions will be, especially given that the time lag between emissions and their full impact may range from decades to centuries.19

III. AVIATION SECTOR

A. DISTINGUISHING CHARACTERISTICS OF THE SECTOR

International aviation plays a major role in the world economy and any reduction of, or restraints on, aviation would affect international trade, international business, and tourism.20 Aviation is also critical to national defense. Air transport is singled out from other service sectors because it operates internationally and affects the international economy.

Unlike other sectors of the economy, aviation is highly sensitive to fuel price changes: fuel costs make up the largest percentage of total operating costs. Increases in fuel costs generally result in less service to remote communities, an increase in prices to consumers for air services, and a drop in demand for new aircraft. The significance of fuel prices has led to a great deal of research on opportunities for efficiency improvements.21

Aircraft travel is the safest mode of available transportation. The fatality rate in 1992 was 0.06 passenger fatalities per 100

19 See OTA REPORT, supra note 4, at 3.

21 See EPA REPORT, supra note 9, at V-25.
million passenger kilometers.22 The international aviation community's remarkable safety record is in great part attributable to technological innovation and ICAO's role in setting corresponding international Standards and Recommended Practices.

The Intergovernmental Panel on Climate Change (IPCC), the international scientific body directing international atmospheric research on global warming, has recognized the aviation sector's unique nature. The IPCC has begun a study of the atmospheric effects of aviation, due in April 1999. This report is likely to be treated as the authoritative scientific research document on the aviation sector's effect on the climate.

\section*{B. Growth}

Air transportation of passengers, freight, and mail has been growing rapidly. In 1945, 9 million people traveled on scheduled air services.23 In 1993, 1.2 billion people were carried.24 The ICAO projects that in 2001, 1.8 billion passengers will be carried.25 In a March 1997 forecast, ICAO found that, between 1995 and 2005, world airline scheduled passenger traffic is expected to grow at an average annual rate of 5.5 percent, and total freight traffic is expected to grow at an average annual rate of 7 percent.26

Air traffic grew about three times as fast as the gross national product in the early 1970s and twice as fast since the early 1980s.27 Since the 1960s, air traffic has declined only once, in 1991 as a result of the Gulf War and travelers' fears about terrorism.28 From 1990 to 1995 air traffic grew at an average of 6.5 percent per year.29 Air traffic is expected to continue to grow as a result of deregulation in developed countries and industrialization in developing countries.30 Assuming these growth rates continue, countries' decisions that affect aviation in the next five to ten years will influence emission levels for decades to come.

\begin{itemize}
\item22 See Information Kit, supra note 16, at 22.
\item23 See id.
\item24 See id.
\item25 See id.
\item26 See ICAO, Growth in Air Traffic To Continue: ICAO Releases Long-Term Forecasts (Mar. 1997) <http://www.cam.org/home/icao/public_html/nr/pio9704.htm>.
\item27 See OECD Report, supra note 20, at 15.
\item28 See id.
\item29 See id. at 5.
\item30 See id.
\end{itemize}
C. EMISSIONS

Emissions from aircraft include smoke, CO₂, water vapor, CO, and NOₓ. Aircraft contribute two to three percent of the world’s anthropogenic CO₂ emissions. In 1990, world civil aviation was responsible for approximately 420 million tonnes of CO₂, of which about half was due to international traffic. By 1995 those emissions grew to approximately 550 million tonnes. The United States has no domestic or international obligations to regulate or set standards for aircraft emissions of carbon dioxide.

It is unclear what effect aircraft emissions of CO and NOₓ have on the environment. Some researchers believe that NOₓ emissions act as a significant greenhouse gas precursor and that its radiative impact may be as large as that of CO₂ emissions. It is also unclear what effect reducing aircraft NOₓ emissions will have on greenhouse gases. For instance, reducing aircraft emissions of NOₓ may increase CO₂.

There are several ways of limiting aviation emissions, but each carries a heavy price: mandatory phase-out of older aircraft; technology-forcing engine certification requirements; operational restrictions on aircraft; or an emissions budget—similar to the emissions budget proposed by the United States for the Third Conference of the Parties to the FCCC—for civil aviation. The most frequently suggested proposal is to levy fuel or emissions taxes. Each proposal, if implemented, may well lead to some increase in airline fares and air cargo rates, diminished airline service to smaller cities, and job losses in the airline, aerospace manufacturing, and travel and tourism sectors. Furthermore, at least some of the proposals are likely to violate international treaty obligations.

Aircraft emissions and noise are the two major environmental problems associated with civil aviation. Engine designs are bal-

31 See id.
32 See id.
33 See id. at 12.
35 See infra notes 81-96 and accompanying text.
36 The Environmental Defense Fund has recommended that an emissions budget for civil aviation be created. See OECD Report, supra note 20, app. F, at 58 (suggested language to address emissions budgets for civil aviation put forward by Environmental Defense Fund).
CIVIL AIRCRAFT EMISSIONS

anced to optimize performance in meeting a wide range of objectives: safety, reliability, noise, emissions, and fuel efficiency. Unfortunately, the operational performance requirements of a jet turbine engine are many, varied, and sometimes in conflict. Emission stringency must be considered within this broad context of total engine performance objectives because reducing one objective may increase another, e.g., reducing noise increases fuel burn, which results in greater emissions.

IV. CHICAGO CONVENTION

The basic instrument governing international civil aviation is the Convention on International Civil Aviation (Chicago Convention), a multilateral treaty negotiated in November 1944 at the International Civil Aviation Conference in Chicago. The conference, an outgrowth of World War II when some commercial aircraft previously used for carrying passengers and mail were put to military use, reflected international concern over whether development of aviation could "serve peace as efficiently as it had served war." The conference set out to formulate international technical and economic standards and to establish institutions to effect and maintain the agreed upon standards.41

37 See Page, supra note 34, at 39.
38 See PAUL STEPHEN DEMPSEY, LAW & FOREIGN POLICY IN INTERNATIONAL AVIATION 9 (1987).
40 JACQUES NAVEAU, INTERNATIONAL AIR TRANSPORT IN A CHANGING WORLD 26 (1989). Interestingly, the Chicago Convention’s first words bespeak this concern: "the future development of international civil aviation can greatly help to create and preserve friendship among the nations and peoples of the world, yet its abuse can become a threat to general security." Convention On International Civil Aviation, Dec. 7, 1944, Preamble, 61 Stat. 1180, 15 U.N.T.S. 295, 296 [hereinafter Chicago Convention].
41 The technical aims concerned setting up international arrangements for licensing pilots and mechanics, registering and certifying the airworthiness of aircraft, standardization and planning for the development of navigational aids, collecting statistics, exchanging technical information, and similar essential technical tasks and procedures. The economic objectives included: the assignment of air routes to nations and to airlines; the arrangement for setting air fares, frequencies, schedules, and capacities; and methods of facilitating interairline fare transfers, customs arrangements, cooperation in servicing and coordination of schedules. An extremely important subgroup of aims at the conference concerned the arrangements for obtaining authority to overfly an-
Ultimately, the Chicago Convention established guidelines for flight over signatory states' territory, aircraft nationality, air navigation rules, conditions of individual aircraft, and international Standards and Recommended Practices. The Chicago Convention also established ICAO.

The Chicago Convention set the principles for the postwar operation of international civil aircraft. The Convention recognizes that every state "has complete and exclusive sovereignty over the airspace above its territory" and that no national sovereignty exists over the high seas. The principle of sovereignty, however, is limited by each state's obligation to observe the general interests of international civil aviation. For instance, a contracting state has the right of non-scheduled flight over another contracting state.

The Chicago Convention's goal was to achieve a system of uniform regulation of matters affecting international aviation. In terms of adopting international standards and procedures, the Convention calls on contracting states to "collaborate in securing the highest practicable degree of uniformity in regulations, standards, procedures, and organization in relation to aircraft, personnel, airways and auxiliary services in all matters in which such uniformity will facilitate and improve air navigation."

The Chicago Convention vests ICAO with the authority to adopt and amend international Standards and Recommended Practices dealing with, among other things, "safety, regularity, and efficiency of air navigation," and airworthiness of aircraft. Departing from international standards and procedures requires a contracting state to notify ICAO immediately and ICAO to immediately notify all other contracting states of the difference existing between the international standard and practice of the non-compliant state.

other nation's sovereign territory and to make stops in foreign territory for technical reasons, that is, for fuel and maintenance.

45 See id.

46 See id. art. 38, 61 Stat. at 1191, 15 U.N.T.S. at 322. The Chicago Convention sets forth a dispute settlement mechanism for instances where there is disagreement as to how to interpret or apply the Convention. See id. ch. XVIII, 61 Stat. at 1204-05, 15 U.N.T.S. at 352. It is infrequently used. In the case of failed negotia-
The Chicago Convention is supplemented by a set of "technical annexes" dealing with specific matters of international standards. Upon a two-thirds majority vote, the Council adopts international Standards and Recommended Practices and designates them as Annexes. An Annex becomes mandatory for all states that do not within sixty days notify the Council of their intention to apply different national rules and for all traffic over the high seas. The advantage of this system, as noted by Peter Sand, is that "[t]his flexible ‘tacit consent’ procedure, designed specifically to reconcile the divergent requirements of developed and developing nations, makes it comparatively easy to adjust technical standards by majority decision without forcing complete uniformity."

A. Bilateral Air Transport Agreements

International civil aviation is also governed by a complex web of bilateral air transport agreements. Although the Chicago Convention established multilateral agreement in some areas and an application of one of the concerned parties, the dispute shall be resolved by the ICAO Council. See id. art. 84, 61 Stat. at 1204, 15 U.N.T.S. at 352. A party may appeal the Council's decision to an ad hoc arbitral tribunal or the International Court of Justice. See id. Where the parties to a dispute cannot agree on the International Court of Justice or on the choice of an arbitral tribunal, the Convention sets forth an arbitration procedure. See id. art. 85, 61 Stat. at 1204, 15 U.N.T.S. at 352. If an airline fails to conform to a decision rendered in a dispute, each contracting state is to forbid that airline's operation in its airspace. See id. art. 87, 61 Stat. at 1205, 15 U.N.T.S. at 354. The penalty for a state's non-conformity to a decision is suspension of its voting power in the Assembly. See id. art. 88, 61 Stat. at 1205, 15 U.N.T.S. at 354.

47 The Annexes deal with the following subjects: Personnel Licensing (Annex 1); Rules of the Air (Annex 2); Meteorological Service for International Air Navigation (Annex 3); Aeronautical Charts (Annex 4); Units of Measurement to be used in Air and Ground Operations (Annex 5); Operation of Aircraft (Annex 6); Aircraft Nationality and Registration Marks (Annex 7); Airworthiness of Aircraft (Annex 8); Facilitation (Annex 9); Aeronautical Telecommunications (Annex 10); Air Traffic Services (Annex 11); Search and Rescue (Annex 12); Aircraft Accident Investigation (Annex 13); Aerodromes (Annex 14); Aeronautical Information Services (Annex 15); Environmental Protection (Annex 16); Safeguarding International Civil Aviation against Unlawful Acts (Annex 17); and The Safe Transport of Dangerous Goods by Air (Annex 18).

49 See id. art. 54(b), 61 Stat. at 1197, 15 U.N.T.S. at 334.

50 See id. art. 38, 61 Stat. at 1191, 15 U.N.T.S. at 322.

51 See id. art. 12, 61 Stat. at 1183, 15 U.N.T.S. at 304.

(e.g., safety standards), it did not formulate an acceptable set of multilateral rules relating to economic rights. The exchange of economic rights between nations is effected through bilateral negotiations that take place more or less under the umbrella of Article 6 of the Chicago Convention. On a reciprocal basis, states negotiate bilateral air transport agreements that deal with issues of market access, airline tariffs, and capacity. In addition, the bilateral agreements address “the designation and licensing of airlines, their ownership and control, customs and tax exemptions... as well as the bilateral processes necessary for agreement implementation, review, amendment and dispute resolution.” There are over 2500 bilateral air transport agreements worldwide.

Bilateral air transport agreements limit signatory states from unilaterally restricting or taxing air services. For instance, neither the Chicago Convention nor any general treaty prevents countries from imposing tax on international aviation fuel sold within their borders. However, nearly all of the bilateral air transport agreements provide an exemption from fuel taxes on a reciprocal basis for fuel sold to a foreign airline. Any imposition of fuel tax by one bilateral partner on the airlines of another bilateral partner would require a review of, and amendment to, the bilateral treaty obligations between the two partners. Failing to do so would be a violation of the agreement.

B. INTERNATIONAL CIVIL AVIATION ORGANIZATION

The Chicago Convention created the permanent ICAO. One month after ICAO was established, the United Nations and ICAO concluded an agreement whereby ICAO became a United Nations’ specialized agency with exclusive responsibility for all

53 Article 6 provides that scheduled international service may not be operated over another contracting state unless there is “special permission or other authorization” by that state and “in accordance with the terms of such permission or authorization.” Chicago Convention, supra note 40, art. 6, 61 Stat. at 1182, 15 U.N.T.S. at 300.
55 Id.
56 See OECD Report, supra note 20, at 19.
57 See id.
aspects of international aviation. The Chicago Convention provides:

the aims and objectives of the Organization are to develop the principles and techniques of international air navigation and to foster the planning and development of international air transport so as to:

a) Insure the safe and orderly growth of international civil aviation throughout the world;
b) Encourage the arts of aircraft design and operation for peaceful purposes;
c) Encourage the development of airways, airports, and air navigation facilities for international civil aviation;
d) Meet the needs of peoples of the world for safe, regular, efficient and economical air transport;
e) Prevent economic waste caused by unreasonable competition;
f) Insure that the rights of contracting States are fully respected and that every contracting State has a fair opportunity to operate international airlines;
g) Avoid discrimination between contracting States;
h) Promote safety of flight in international air navigation;
i) Promote generally the development of all aspects of international civil aeronautics.

ICAO's structure is set up to deal with a wide range of matters affecting international air navigation and transport. ICAO is made up of the Assembly, Council, and subsidiary bodies, with ultimate control and authority vested in the Assembly, which meets at least once every three years and is composed of representatives from the contracting states. Each state has the right to be represented at the Assembly's meetings, and each state is entitled to one vote, resulting in smaller, less powerful states having as much voting power as larger, more powerful ones. Unless otherwise provided for by the Convention, a majority of

60 See id. art. 48(a), as amended in Amendments to Articles 48(a) 49(e) and 61 of the Convention, Ass. Res. A 8-1 (1954) compiled in Assembly Resolutions in Force, at I-16, IACO Doc. 9662 (Oct. 4, 1995). Prior to its amendment, article 48(a) envisaged an annual meeting of the Assembly. See Chicago Convention, supra note 40, art. 48(a), as originally written, 61 Stat. at 1193, 15 U.N.T.S. at 328.
61 See Chicago Convention, supra note 40, art. 48(b), 61 Stat. at 1194, 15 U.N.T.S. at 328.
votes is required for the Assembly to make decisions.62 The primary powers and duties of the Assembly are to elect the Council; take action on the Council’s reports; determine ICAO’s financial arrangements and review its expenditures; delegate matters to the Council or the appropriate subsidiary body; decide whether agreements should be made with other international bodies; amend the Convention;63 and deal with any matter not specifically delegated to the Council.64

The Council is the permanent body of ICAO. The Assembly selects the thirty-three member Council for a three-year term.65 In contrast with the strictly one-state-one-vote of the Assembly, the Council is composed of states that are of chief importance in air transport, the largest contributors to the provision of facilities for international air navigation, and representative of all major geographical areas.66 Council representatives may not be associated with the operation of international air service or have financial interests in the sector.67 This ensures the non-biased representation of the contracting state, and that its representatives consider interests of aviation generally.68

The Council’s duties are divided into mandatory and permissive functions. The Council’s principal mandatory functions are to submit annual reports to the Assembly, carry out Assembly delegated matters, appoint the Secretary General and members of permanent commissions, report infringements to the Assembly, adopt and modify the Convention’s Annexes, and publish information relating to air navigation and operation of international air services.69

The permissive functions, those which the Council may undertake by choice, are to create commissions to facilitate the Convention’s aims, research aspects of air transport and navigation of international importance, and investigate situations that present possible obstacles to the development of international

62 See id. art. 48(c), 61 Stat. at 1194, 15 U.N.T.S. at 328.

63 An amendment to the Convention requires both a two-thirds vote by the Assembly and ratification by two-thirds of the contracting states to enter into force. See id. art. 94(a), 61 Stat. at 1206-07, 15 U.N.T.S. at 358.

64 See id. art. 49(k), 61 Stat. at 1194, 15 U.N.T.S. at 330.

65 See id. art. 50(a), as amended, 61 Stat. at 1195, 15 U.N.T.S. at 330.

66 See id. art. 50(b), 61 Stat. at 1195, 15 U.N.T.S. at 330, 332.

67 See id. art. 50(c), 61 Stat. at 1195, 15 U.N.T.S. at 332.

68 See CAROLE BLACKSHAW, AVIATION LAW & REGULATION: A FRAMEWORK FOR THE CIVIL AVIATION INDUSTRY 6 (1992).

69 See Chicago Convention, supra note 40, art. 54, 61 Stat. at 1196, 15 U.N.T.S. at 334.
aviation. The Council is also responsible for submitting annual budgets to the Assembly, detailing receipts and expenditures. In addition, the Council adopts International Standards and Recommended Practices, and incorporates them as Annexes to the Chicago Convention.

There are several subsidiary bodies that are established under the Convention or have been set up by the Assembly: Air Navigation Commission, which deals with technical matters; Air Transport Committee, which deals with economic matters; Legal Committee; Committee on Joint Support of Air Navigation Services; Committee on the Unlawful Interference of Aircraft; and Committee on Finance. These subsidiary bodies do much of the research and planning for the Council.

C. CHICAGO CONVENTION TODAY

The Chicago Convention has achieved outstanding success in creating an international institution that has developed a comprehensive body of international civil aviation rules. With 185 member states, ICAO is considered one of the United Nations' largest and most successful specialized agencies.

Much of ICAO's work has focused on the technical aspects of civil aviation. In particular ICAO has aided developing states through its technical assistance programs. The work in developing countries has primarily focused on "the development of the ground services required for civil aviation and, in particular, toward aerodromes, air traffic control, communications and meteorological services . . . assistance to States in order to improve their aviation security facilities and procedures."
The Chicago Convention did not attempt to deal comprehensively with tax matters. Contracting states agreed to refrain from imposing taxes or customs duties on aircraft engaged in international aviation or on the fuel and oil on-board the aircraft. This provision effectively prevents aircraft from being taxed on its on-board fuel as it enters and leaves different countries. In response to changes in international civil aviation, the ICAO Assembly sought to reaffirm and strengthen the principles of non-taxation. In 1993, the Council adopted a resolution, endorsing a policy of reciprocal exemption from customs and duties for fuel taken aboard for consumption by an aircraft engaged in international air transport.

V. ICAO AND THE ENVIRONMENT

A. HISTORY OF INVOLVEMENT

ICAO has a history of interest and involvement in international environmental issues. In 1972, ICAO's position at the United Nations Conference on the Human Environment was set in Assembly Resolution A18-11, which provided: "in fulfilling this role ICAO is conscious of the adverse environmental impact that may be related to aircraft activity and its responsibility and that of its member states to achieve maximum compatibility between the safe and orderly development of civil aviation and the quality of the human environment." In the same year, the Assembly also adopted Resolution A18-12, which instructed the Council "to continue with vigour the work related to the development of Standards, Recommended Practices and Procedures and/or guidance material dealing with the quality of the human environment" with the assistance of other parts of ICAO and other international organizations. This resolution led to the establishment of an "ICAO Action Programme Regarding the Environment." In 1977, an outgrowth of the programme was an ICAO Circular, entitled "Con-

79 ICAO, Assembly Resolution A18-11 (1972).
80 ICAO, Assembly Resolution A18-12 (1972).
trol of Aircraft Engine Emissions.”82 The Circular contained a certification procedure for the “control of vented fuel, smoke and certain gaseous emissions for new turbo-jet and turbofan engines intended for propulsion at subsonic speeds.”83 Recognizing that the subject of aircraft engine emissions was not purely technical, the Council established the Committee on Aircraft Engine Emissions in 1977 to address a number of aspects of aircraft emissions.84 In 1981, this committee’s work led to the development of environmental protection standards relating to emissions.85 These standards were guided by the philosophy of achieving “maximum compatibility between the safe and orderly development of civil aviation and the quality of the human environment.”86

B. Annex 16

Annex 16 to the Chicago Convention sets the international Standards and Recommended Practices for the environmental aspects of aviation and is aptly named “Environmental Protection.”87 Volume I of Annex 16 addresses aircraft noise and Volume II addresses aircraft engine emissions. Volume II calls for the prevention of intentional fuel venting and establishes standards for aircraft emissions control through an engine certification scheme. Fuel venting occurs when a plane has been designed in such a manner that the fuel nozzle manifolds discharge liquid fuel during normal flight or ground operations.88 Annex 16 requires that “all turbine engine powered aircraft intended for operation in international operation manufactured after 18 February 1982” be designed and constructed to prevent such an intentional discharge.89 In addition, Volume II limits certain aircraft emissions through an engine certification process, depending on the age and type of the aircraft and establishes a highly technical process for measuring emissions.90 The

82 Id.
83 Id.
84 See id.
85 See id. at vii.
86 ICAO, Assembly Resolution A18-11 (1972).
87 ANNEX 16, supra note 81; see also ICAO, INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES, ENVIRONMENTAL PROTECTION, SUPPLEMENT TO ANNEX 16—ENVIRONMENTAL PROTECTION, Vol. II (2d ed. Dec. 1994) [hereinafter ANNEX 16 SUPPLEMENT].
88 See Annex 16, supra note 81, at 4.
89 Id. at 3.
90 See id. at 6.
emissions controlled and kept under review by ICAO are smoke, hydrocarbons, CO and NO\textsubscript{x} from new engines.\footnote{See id.} Because aircraft engines are an international commodity, manufacturers build aircraft to meet Annex 16 standards. Manufacturers of aircraft or engines must show that their product meets Annex 16 noise and emission standards before it can enter commercial service.

Parties to ICAO have effectively undertaken a commitment through Annex 16 to adhere to acceptable ceilings for aircraft emissions.\footnote{See id. at v.} Under the Chicago Convention, countries that are unable to abide by Annex 16 are required to notify ICAO of any differences between their national regulations and practices and the Annex's international Standards and Recommended Practices.\footnote{See Chicago Convention, supra note 40, art. 38, 61 Stat. at 1191, 15 U.N.T.S. at 322.} In addition, contracting states are required to publish their differences through the Aeronautical Information Service as required by Annex 15.\footnote{See Annex 16, supra note 81, at v.} Eleven of the 185 contracting states have notified ICAO of differences between their own practices and those established by Annex 16 relating to NO\textsubscript{x} and CO emissions stringency.\footnote{See Philippe Sands, Principles of International Environmental Law I: Frameworks, Standards and Implementation 258 (1995). For more information on the types of differences, see Annex 16 Supplement, supra note 87, at iii.} The United States, despite its international obligations and active participation in ICAO, until 1997 was not in compliance with Annex 16's NO\textsubscript{x} and CO provisions and had failed to notify ICAO of its differences. However, U.S. air carriers purchasing new aircraft were in compliance with Annex 16 because aircraft engine manufacturers design and build engines that adhere to ICAO standards.

The ICAO's Committee on Aviation Environmental Protection (CAEP), established in 1983, is charged with making recommendations regarding international noise and emission standards to the decision-making bodies of ICAO. The CAEP's members are experts in the field of aviation and the environment.\footnote{See R.I.R. Abeyratne, Legal and Regulatory Issues in International Aviation, 287 (1996) [hereinafter Legal and Regulatory Issues].} The CAEP handles the majority of ICAO's environment-related activities. In December 1995, the CAEP recommended a 16 percent increase in stringency for the NO\textsubscript{x} standard applicable to medium and large engines to be
designed for the first time in the year 2000 and manufactured for the first time in the year 2008. In April 1997, the Council decided not to adopt this standard. As a result, the Emissions Planning Group was established to formulate a proposal on aircraft emissions to be presented at the CAEP conference in April 1998.

C. RECENT ACTIVITY OF THE ASSEMBLY

In 1995, the thirty-first session of the Assembly adopted a consolidated statement of ICAO's policies and practices relating to environmental protection. Assembly Resolution A31-11 reiterates both ICAO's general principle laid out in Assembly Resolution A18-11 and the Council's need to maintain the lead in developing guidance on aviation matters related to the environment, so as to not leave such initiatives to other organizations. In addition, the resolution urges states to ensure that any local operating restriction based on engine characteristics "be adopted only where such action is supported by a prior assessment of all possible adverse impacts" and discourages states from "unilateral environmental measures that would be harmful to the development of international civil aviation."

Due to increasing international concern over global warming and ozone depletion, ICAO has become an active participant in these areas. ICAO is working with other international bodies to determine the extent of the aviation sector's contribution to these environmental problems. Assembly Resolution A31-11, Appendix F, deals expressly with the environmental impact of civil aviation on the upper atmosphere. The Resolution directs the Council to expand both its and CAEP's involvement in the international global warming discussions by working closely with the United Nations Environment Programme, the World Meteorological Organization, the IPCC and the FCCC's Conference to the Parties.

99 See id. at app. B.
100 Id. at app. E.
101 Id. at app. A, ¶ 5.
102 See Public Information Office of ICAO, supra note 54.
103 See id.
VI. 1992 U.N. FRAMEWORK CONVENTION ON CLIMATE CHANGE

A. HISTORY OF NEGOTIATIONS

Concern about climate change intensified in 1988, when unusual weather and significant drought occurred in various parts of the world. In response to these events, the international community established the Intergovernmental Panel on Climate Change (IPCC) in 1988, under the auspices of the United Nations Environment Programme and the World Meteorological Organization. The IPCC is a U.N. scientific body directing international atmospheric research on global warming; its mission is to provide policymakers with the best possible scientific assessment of global warming. The IPCC’s goals are to (1) review and assess the science relevant to climate change, (2) assess the possible environmental and socioeconomic impacts of climate change, and (3) identify potential response strategies. In 1990, the IPCC submitted its findings in the First Assessment Report to the U.N. General Assembly and the second U.N. World Climate Conference.105 The U.N. General Assembly adopted the report, which became the basis for the Framework Convention on Climate Change.106

The FCCC was opened for signature at the 1992 U.N. Conference on Environment and Development in Rio de Janeiro. Over 150 nations signed the FCCC at the so-called “Earth Summit.” The FCCC commits contracting countries to a voluntary reduction of greenhouse gases with the aim of stabilizing emissions at 1990 levels by the year 2000. The framework has provided the foundation for subsequent U.N. conferences on global warming.

B. OBJECTIVE AND GENERAL COMMITMENTS

The FCCC’s ultimate objective is to:

[A]chieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food produc-

105 See CONGRESSIONAL RESEARCH SERVICE, U.S. CONGRESS, GLOBAL CLIMATE CHANGE 7, IB89005 (Feb. 25, 1997).
106 See id. at 8.
tion is not threatened and to enable economic development to proceed in a sustainable manner.107

To accomplish this objective, the framework sets forth a series of commitments in Article 4. Unlike the Chicago Convention, the FCCC distinguishes between developed and developing nations, committing all to certain common obligations, but requiring stronger actions on the part of developed countries. All countries are required to inventory their emissions and sinks of greenhouse gases and to "[f]ormulate, implement, publish and regularly update national and, where appropriate, regional programmes containing measures to mitigate climate change108 These obligations are qualified explicitly by the acknowledgment that nations "have specific national and regional development priorities, objectives, and circumstances;109" this qualification may be to justify differing levels of achievement of even these common duties.

The Framework language addressing the commitments for developed countries—twenty-seven members of the OECD plus the former Communist block countries, referred to as Annex I countries110—is confusing and convoluted.111 It neither re-

107 United Nations Framework Convention on Climate Change, May 9, 1992, art. 2, 31 I.L.M. 848, 854 [hereinafter Climate Change Convention].

108 Id. art. 4(1)(b), 31 I.L.M. at 855.

109 Id. art. 4(1), 31 I.L.M. at 855.

110 The 36 Annex I countries are as follows: Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Czech Republic, Denmark, Estonia, European Community, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom of Great Britain and Northern Ireland, and United States of America. Any country not classified as an Annex I country is considered a developing country.

111 The binding commitments for Annex I countries are set out in Article 4(2), which provides:

a) Each of these Parties shall adopt national policies and take corresponding measures on the mitigation of climate change, by limiting its anthropogenic emissions of greenhouse gases and protecting and enhancing its greenhouse gas sinks and reservoirs. These policies and measures will demonstrate that developed countries are taking the lead in modifying longer-term trends in anthropogenic emissions consistent with the objective of the Convention, recognizing that the return by the end of the present decade to earlier levels of anthropogenic emissions of carbon dioxide and other greenhouse gases not controlled by the Montreal Protocol would contribute to such modification, and taking into account the differences in these Parties' starting points and approaches, economic structures and resource bases,
quires that greenhouse gas emissions be stabilized by the year 2000 at 1990 levels nor requires a return to 1990 levels by the year 2000, as has been widely reported.112 The framework language merely commits Annex I countries to communicate to other parties information on their policies and measures to reduce “their” net greenhouse gas emissions with the “aim” of returning greenhouse gas emissions to 1990 levels by the year 2000.113 The FCCC does not contain any mechanism to enforce these aims.

Annex II countries,114 a subset of the Annex I countries, have the additional responsibility of specific financial commitments. They are to “provide new and additional financial resources” to help developing countries comply with the reporting requirements.115 In addition, Annex II countries must assist financially those developing countries made vulnerable by global climate change.116 Furthermore, Annex II countries are to promote, fa-
cilitate, and finance technology transfers to developing countries.\(^{117}\)

C. FCCC INSTITUTIONS

The FCCC establishes a Conference of the Parties to review and promote the implementation of the Framework.\(^{118}\) The parties agreed that the adequacy of Annex I countries' commitments would be reviewed at the Conference of the Parties' first meeting, and periodically thereafter, to determine whether additional action might be needed to move toward the FCCC's ultimate objective—the stabilization of greenhouse gas concentrations.\(^{119}\)

The FCCC establishes a scientific body, the Subsidiary Body for Scientific and Technological Advice (SBSTA), to assess the state of global climate change research, determine the feasibility of technology research, assess the effect of measures taken under the Framework, work with other scientific and international bodies, and answer questions posed by the Conference of the Parties.\(^{120}\) The Framework also seeks to establish a financial mechanism for the administration of financial resources, but fails to establish anything permanent. At the Earth Summit, there was tremendous disagreement among countries as to how the financial mechanism should work.\(^{121}\) The Global Environment Facility is temporarily administering the FCCC's financial mechanism.\(^{122}\)

D. CONFERENCE OF THE PARTIES

At the First Conference of the Parties in March 1995, the parties acknowledged that existing commitments under the FCCC would not meet the objective of stabilizing greenhouse gas emissions.\(^{123}\) The Annex I countries launched a new process (the "Berlin Mandate") with a 1997 deadline for strengthening devel-

\(^{117}\) See id. art. 4(5), 31 I.L.M. at 858.

\(^{118}\) See id. art. 4(2)(d), 31 I.L.M. at 857.

\(^{119}\) See id.

\(^{120}\) See id. art. 9, 31 I.L.M. at 863.

\(^{121}\) SANDS, supra note 95, at 280.

\(^{122}\) CONGRESSIONAL RESEARCH SERVICE, U.S. CONGRESS, CONGRESS AND INTERNATIONAL ENVIRONMENTAL POLICY 14, 93-695 ENR (May 1993).

oped countries’ commitments. The parties hoped to “negotiate a ‘comprehensive menu of actions’ from which countries may pick and choose options to address climate change which, individually, make the best economic and environmental sense, as well as a uniform approach to reporting emissions and measures.”\(^\text{124}\) In addition, parties agreed to begin discussing post-2000 options, focusing on strengthening the commitments of the parties by elaborating policies and measures, as well as setting quantifiable objectives.\(^\text{125}\)

At the Second Conference of the Parties in July 1996, the countries endorsed IPCC’s *Second Assessment Report*, agreed on the contents of the first national communications that developing countries were to submit, and approved the “activities implemented jointly” pilot program for reducing global greenhouse gases.\(^\text{126}\) In a major policy reversal, the Clinton Administration committed U.S. support for binding targets\(^\text{127}\) and rejected the imposition of “harmonized policies and measures” at this conference.\(^\text{128}\) The United States later proposed a protocol\(^\text{129}\) that established a budget for emissions “that retains each party’s flexibility with respect to the choice of domestic policies and measures to implement the target.”\(^\text{130}\)

At the Third Conference of the Parties in Kyoto, Japan, the parties agreed to the Kyoto Protocol. The agreement reached in the Kyoto Protocol provides for developed countries to agree to binding national targets for greenhouse gas emissions of CO_2, methane, NO_x, and three halocarbons used as substitutes for ozone-damaging chlorofluorocarbons. Under the Protocol, in the commitment period 2008-2012 the European Community’s members would be collectively bound to an eight percent reduc-

\(^{124}\) *Congressional Research Service*, *supra* note 105, at 9.

\(^{125}\) *See Assessing Progress*, *supra* note 123, at 4-5.

\(^{127}\) The Clinton Administration issued the Climate Change Action Plan of 1993, a voluntary initiative designed to return emissions of greenhouse gases to 1990 levels by 2000, in response to the FCCC. *See Assessing Progress*, *supra* note 123, at 9.

\(^{128}\) *Congressional Research Service*, *supra* note 105, at 12.

CIVIL AIRCRAFT EMISSIONS

...tion below 1990 levels; the United States, a seven percent reduction; and Japan, Canada, Hungary, and Poland, a six percent reduction. Also, Russia, New Zealand, and Ukraine are to stabilize emissions at 1990 levels. Some countries would be permitted to increase their emissions: Norway by one percent, Australia by eight percent, and Iceland by ten percent. Developing countries, such as India and China, were asked to set voluntary reduction targets, but refused.

The Clinton Administration's commitment to emission reductions has ignited a firestorm of criticism from industry leaders, labor unions, and many members of Congress. As a result, the Administration is not expected to seek ratification of the protocol in the Senate, where a two-thirds majority of support would be needed, until at least 1999. The Fourth Conference of the Parties is scheduled to be held in Buenos Aires, Argentina in November 1998.

E. Kyoto Protocol: International Recognition of the Unique Nature of Aviation

While the Kyoto Protocol's national targets apply to emissions from almost all industrial sectors, they exclude emissions from the international aviation sector. The Kyoto Protocol expressly recognizes ICAO as the global organization responsible for the reduction or limitation of international aviation emissions: “The Parties included in Annex I shall pursue limitation or reduction of emissions of greenhouse gases not controlled by the Montreal Protocol from aviation and marine bunker fuels, working through the International Civil Aviation Organization and the International Maritime Organization, respectively.”

In protocol language, emissions of greenhouse gases from aviation bunker fuels refers to aviation emissions. This provision makes clear that ICAO is the principal forum for regulating international aircraft emissions. The question of whether ICAO is the forum for addressing purely domestic aircraft emissions remains open.

The Third Conference of the Parties also issued a “Decision Statement” that states the following:

The Conference of the Parties, Recalling its decisions 4/CP.1 and 9/CP.2, Endorsing the relevant conclusions of the Subsidiary Body for Scientific and Technological Advice at its fourth session, . . .

131 See Kyoto Protocol, supra note 1, at 30.
132 Id. art. 2(2), at 9.
(4) Recalls that, under the Revised 1996 Guidelines for National Greenhouse Gas Inventories of the Intergovernmental Panel on Climate Change, emissions based upon fuel sold to ships or aircraft engaged in international transport should not be included in national totals, but reported separately; and urges the Subsidiary Body for Scientific and Technological Advice to further elaborate on the inclusion of these emissions in the overall greenhouse gas inventories of Parties. This Decision demonstrates the need to treat aviation differently than other sectors.

VII. WHY ICAO INSTEAD OF THE FCCC?

The Kyoto Protocol and its Decisions ensure that ICAO continues to retain exclusive jurisdiction for global aviation policy, thereby avoiding fragmentation of global aviation environmental policy. ICAO's role as the organization responsible for providing information on international civil aviation operations and developing policy guidance on possible means of reducing international civil aviation's undesirable effects on the environment has been reaffirmed.

Prior to Kyoto, ICAO's technical expertise and ability to achieve greater compliance with limiting emissions bolstered the argument for the removal of aircraft emissions from the FCCC's purview and the delegation of that responsibility to ICAO. The Third Conference of the Parties recognized this, and as a result, made ICAO the sole international forum responsible for regulating aircraft emissions. Described below are some of the advantages of having international emissions handled by ICAO rather than the FCCC.

A. AMBIGUITY UNDER THE FCCC

Prior to the Kyoto Protocol, the U.N. climate change negotiations had failed to recognize the uniqueness of the global civil aviation sector. In particular, the FCCC's treatment of aircraft emissions is ambiguous because it is unclear how international aviation emissions are to be allocated. The FCCC calls on countries to "aim" to limit "their" emissions. Traditionally, there has been a strong connection between airlines and countries. Commercial air transport since its inception has relied on the

133 Id. at 31.
134 See Climate Change Convention, supra note 107, art. 4(2)(b), 31 I.L.M. at 857.
support of national governments.135 This connection may not be maintained in the future given the trend towards privatization and the merging of airlines.136 In addition, aircraft may for economic reasons be registered in one country, but may actually be leased or chartered for operation elsewhere.137 There is also the added complication of where bunker fuel138 intake occurs because the fuel intake does not necessarily take place in the country of original departure. Also, a considerable percentage of aviation operations is conducted over the high seas, outside any countries jurisdiction.

The effect of the Framework's language is that domestic aviation emissions are included in a country's aim, whereas the treatment of international aircraft emissions remains unclear.139 The FCCC's Subsidiary Body for Scientific and Technological Advice (SBSTA) is currently discussing aircraft emission allocations options for Annex I parties.140 The options being discussed include:

1) No allocation;
2) Allocation of global emissions from bunker fuels to parties in proportion to their national emissions;
3) Allocation to parties according to the country where the bunker fuel is sold;
4) Allocation to parties according to the nationality of the transporting company, the country where the aircraft is registered, or the country of the operator;
5) Allocation to parties according to the country of departure or destination of an aircraft. Alternatively the emissions related to the journey of an aircraft could be shared between the country of departure and the country of arrival;
6) Allocation to parties according to the country of departure or destination of passenger or cargo. Alternatively, the emis-

135 See Dempsey, supra note 38, at 7.
137 See id.
138 Bunker fuel is defined as fuels sold to any aircraft engaged in international transport. See id. at 14 n.18.
139 See OECD Report, supra note 20, at 20. Under the Kyoto Protocol, however, it is no longer clear whether domestic Aviation emissions are included in a country's aim.
140 See id.
sions related to the journey of a passenger or cargo could be shared by the country of departure and the country of arrival;
7) Allocation to parties according to the country of origin of the passenger or the owner of cargo; and
8) Allocation to the party of emissions generated in its national space.

SBSTA is studying options 1, 3, 4, 5, and 6 to determine the best option for dealing with international aviation emissions. Option 1, the "reporting of emissions by Parties in a separate category," would allow the FCCC countries to work through ICAO to achieve emission reduction. The Third Conference of the Parties in the Kyoto Protocol's Decisions chose Option 1 pending further study by SBSTA. The primary problem with Options 3 through 6 is that they each lead to a disruption of the bilateral air transport regime because countries are unlikely to implement the same policies and measures to manage aviation emissions.

B. TECHNICAL EXPERTISE

ICAO is the technical agency that establishes international Standards and Recommended Practices for aircraft operations, maintenance, and emissions. One example of ICAO's technical expertise is the satellite-based system it has developed to address the future Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) needs of civil aviation. ICAO, more importantly, is an experienced regulator of aircraft emissions, having played a leadership role in regulating aircraft emissions since 1977. Through Annex 16, ICAO sets and adjusts rigorous international pre-certification standards for aircraft emissions.

ICAO is the only technical U.N. agency with the background and expertise necessary to develop an international consensus on a fair and effective aircraft emissions policy for greenhouse gases. Any regulator of aircraft emissions must consider a complex set of issues, including the safety of aircraft modifications required by new emissions requirements and the economic impact of technical and operational changes. ICAO has an appre-
CIVIL AIRCRAFT EMISSIONS

ciable understanding of this unique sector’s needs and is well equipped to develop an effective emissions abatement program. For instance, the organization understands and appreciates the balance that has to be reached between noise and emissions.147 ICAO understands that it has only one engine to regulate, and that regulating one component of the engine may affect how another component works. It is this understanding that is so crucial to ensuring the continued safety of the air transport system.

C. GREATER COMPLIANCE

The technological, political, and economic requirements of verifying that parties are in compliance with the FCCC is difficult. A study by the General Accounting Office found that:

[FCCC’s] goal to reduce greenhouse gas emissions cannot be fully assessed because the emissions data are incomplete, unreliable, and inconsistent Although the emissions data for carbon dioxide are considered to have a high level of certainty, the data for other greenhouse gases are much less reliable. For example, the range of uncertainty for Canada’s reported emissions data on methane was plus or minus 30 percent at a 90-percent confidence level and for nitrous oxide emissions, plus or minus 40-percent at an 85-percent confidence level. Such problems limit the completeness and comparability of the inventories and projections and therefore the ability to assess progress against the [C]onvention’s goal. The problems generally result from lack of specific reporting requirements by the Convention and from limitations in the ability to quantify certain greenhouse gas emissions.148

Aircraft emissions are relatively easy to monitor and document. ICAO has experience with measurement and verification of aircraft emissions. Delegating the monitoring of aircraft emissions to ICAO results in better accountability.

D. PREVENTS DUPLICATION OF EFFORTS

The inclusion of international aviation emissions under the FCCC would have duplicated the work of ICAO. After all, ICAO is a permanent executive body with a history of establishing international Standards and Recommended Practices for aircraft operations, maintenance, and emissions. Elimination of waste

\begin{footnotesize}
147 See \textit{supra} note 36 and accompanying text.
148 \textit{Assessing Progress}, \textit{supra} note 123, at 2 (footnote omitted).
\end{footnotesize}
and duplication of work within the United Nations has been a primary goal of the Clinton Administration. As Secretary of State Madeleine Albright put it so eloquently:

We do think there is too much duplication. Every time there is a need for a program it doesn’t mean that there has to be a new group formed that has to have its own stationery and its own organization and its director general. We are downsizing, the U.S. government is downsizing, the U.N. has to downsize and become leaner and more flexible for the duties that it has to perform, not only at the end of this century but the beginning of the next one.149

In this era of fiscal conservatism, it is duplicative and wasteful to have two U.N. organizations responsible for aircraft emissions. The FCCC parties properly delegated responsibility for aircraft emissions to ICAO.

E. MINIMIZATION OF MARKET DISRUPTION

Tackling aircraft emissions is best done on a global level through a comprehensive approach. Global measures are likely to be more cost effective than national initiatives.150 Failure to pursue a comprehensive approach to international civil aviation emissions results in market distortions. Adoption of the Kyoto Protocol minimizes these distortions.

There are at least three ways in which a non-uniform approach to international aircraft emissions would have resulted in greater emissions. First, if CO\textsubscript{2} charges on aviation fuel were not internationally uniform, airlines would tend to buy more of their fuel in countries that have no charge or those that impose the lowest charge. Non-uniform charges would encourage airlines to “tanker,” which reduces the amount of cargo that can be carried, increases fuel consumption used in transporting the tankered fuel, and causes higher greenhouse gas emissions.151

Second, on long-haul flights that are required to make a stop, incentive to travel via countries without restrictions on emissions would increase.152 Passengers seeking the lowest airfares would likely avoid those countries with emissions restrictions and

150 See OECD Report, supra note 20, at 35.

151 See id. Tankering is where an airline takes “on more fuel than is needed for a flight to avoid taking on expensive or lower quality fuel at the next port of call.” Id. at 30.

152 See id. at 31.
would instead fly via neighboring countries not imposing restrictions. If this resulted in passengers taking additional short-haul flights to and from the long-haul departure point, the non-uniformity would again result in greater fuel use and a net increase in greenhouse gas emissions.155

Third, a non-uniform approach would create an inadequate incentive for all airlines to adopt energy efficient technology. On the other hand, the Kyoto Protocol’s uniform approach to aircraft emissions should encourage manufacturers to develop energy-efficient aircraft and should also work to increase the costs for those manufacturers that do not adopt such technology.154

F. Disruption of Bilateral Air Transport Agreements

Without the Protocol’s allocation of authority to ICAO, national emission targets would have upset the vast web of bilateral air transport agreements. For instance, some countries may have sought to reach their target by taxing aviation fuel. The problem is that most of the bilateral air transport agreements exclude the taxation of fuel used by each other’s airlines.155 Implementation of a fuel charge or tax by one state as a means of addressing greenhouse gases reduction goals would either entitle another state to take retaliatory action or would require renegotiation of the country’s bilateral air transport agreements.156

Delegation of formulating the policy for aircraft emissions of greenhouse gases to ICAO minimizes the likelihood of disruption to bilateral air transport agreements. ICAO accepts the principle that countries can impose environmental charges on airlines to recover specific air transport related costs.157 However, ICAO does not accept environmental taxes that are not earmarked.158 By utilizing ICAO, the FCCC countries can be assured that steps taken to limit or reduce aircraft emissions will not upset bilateral air transport agreements.

155 See id.
154 See id. at 35.
155 See id. at 19.
156 See id. at 9.
157 See id. at 19.
158 See id.
G. INCLUSION OF DEVELOPING COUNTRIES

A comprehensive, long-term solution to global warming requires the cooperation of many countries and reductions in emissions from many sources. Every country emits greenhouse gases and shares responsibility for increases in emissions. In 1992, about eighty percent of the world’s scheduled air traffic was done by Annex I countries, with non-OECD Asia/Pacific countries accounting for the majority of the remainder. The demand for aviation services is expected to increase as developing countries’ economies grow, thereby leading to an increased use of fossil fuels and greater emissions of greenhouse gases. An international agreement’s failure to include abatement by developing countries limits the effectiveness of measures to contain global warming.

Neither the FCCC nor the Kyoto Protocol commit developing countries to reductions in their emissions of greenhouse gases. This means that developing countries, like China, are free to burn as much fossil fuel as they want with no consequence except the slow destruction of the global commons. By addressing aviation emissions within ICAO, the prospect of developing countries taking corrective action is higher.

Effective limitation of greenhouse gases requires that developing countries participate in international agreements requiring emissions abatement. ICAO has a long history of successfully including developing countries in its programs.

[B]ilateralism has allowed some developing countries to negotiate access to developed country airline markets on a reciprocal basis. In addition, extensive technical and other forms of assistance through ICAO as well as other assistance [programs] have helped developing countries to achieve and upgrade technical and safety standards and the development of their airport and airspace for international operations, as well as to minimize their disadvantages in both human and financial resources in the air transport sector.

159 See id. at 13. The Asia/Pacific region is projected to have the fastest annual growth in passenger and freight traffic, nine and ten percent, respectively, from 1995 to 2005. See id.

160 See EPA REPORT, supra note 9, at IV-15.

In an average year, the ICAO Technical Co-operation Bureau is involved in more than 200 projects in about 100 countries. Perhaps ICAO could help developing countries secure financing for additional emission-efficient investment, such as implementations of CNS/ATM. The Kyoto Protocol’s allocation of international aircraft emissions to ICAO means that developing countries are more likely to be engaged in abatement of aircraft emissions.

H. A Better Way to Make Law

ICAO, unlike the FCCC, has the background and expertise necessary to develop international consensus on a fair and effective aircraft emissions policy. International consensus is important for any action that affects the operations of, or imposes costs on, international air transport. Several international lawyers have held up ICAO as a model to be followed for reaching consensus on international environmental law. Peter Sand argues that ICAO

copes successfully both with the “bottomline” syndrome (by facilitating upward revision) and with the “slowest-boat” syndrome (by dispensing with ratification). The net result is . . . a pattern of procedures for improving the chances of a decision of the majority (be it simple or two-thirds) of a “legislative” character securing general consent.

ICAO, through the use of tacit consent, creates evolving norms. For example, ICAO’s standards are adopted unless a percentage of the membership blocks them. If ICAO adopts standards, states that find compliance impracticable may opt out. However, the pressure to comply is great, and as a result ICAO’s standards enjoy widespread compliance.

162 The projects range from developing airports to installing communication systems that cost anywhere from $100,000 to $12 million. The funds for these systems come from the U.N. Development Programme or from trust funds established by the states. See Information Kit, supra note 16.

163 For more information on ICAO’s legislative powers see Aberyratne, supra note 96, at 14-20.

164 Sand, supra note 52, at 245 (quoting Derek Bowett, The Law of International Institutions 146 (4th ed. 1982)).

VIII. CONCLUSION

Even though civil aircraft generate a lower percentage of emissions relative to other sectors, the increasing number of aircraft in the sky, as well as the lack of knowledge pertaining to NOₓ, requires that action be taken to limit aircraft emissions. As the parties to the FCCC recognized in the Kyoto Protocol, ICAO is the proper forum to take such action. Concern, however, remains that the parties to the FCCC may in the future make decisions regarding aviation—and in particular domestic aircraft emissions—without consideration of the sector’s particular characteristics and the expertise of, and work done by, ICAO.