•  
  •  
 

SMU Data Science Review

Abstract

In this paper, we study the prevalence of bias in machine learning; we explore the life cycle phases where bias is potentially introduced into a machine learning model; and lastly, we present how adversarial learning can be leveraged to measure unwanted bias and unfair behavior from a machine learning algorithm. This study focuses particularly on the topics of age bias in predicting employee attrition and presents a practical approach for how adversarial learning can be successful in mitigating age bias. To measure bias, we calculate group fairness metrics across five-year age groups and evaluate fairness between a baseline predictive model and an adversarial model. Comparing the fairness metrics of demographic parity and equality of odds, as well as model accuracy, the adversarial model demonstrates a definite improvement on the demographic parity measurement across all age groups in relation to the baseline model.

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Included in

Data Science Commons

Share

COinS