Contributor

Andrew Quicksall

Abstract

Iron oxides are widespread in nature and are linked to many natural biogeochemical processes. These minerals play an important role in sorption of metal(loid)s, acceptance of electrons from microbial respiration, photochemical reduction, and heterogeneous catalysis; further, they are used as engineered solutions to aqueous contamination problems. The thermodynamic and kinetic changes of small and large nanoscale hematite particles were investigated under long-term aging, relevant pHs, and ionic strength conditions. Crystallinity, particle size, surface area, pore size volume, and phase purity were analyzed by various techniques including XRD, BET, and TEM. The results indicated that thermodynamic and kinetic changes vary with age for each of the average particle sizes, which were 15-25nm and 40-50nm. Under the same conditions, crystal growth rates were higher for smaller particle sizes. Recrystallization occurred through the Ostwald ripening mechanism. Thermodynamic modeling demonstrated that the solubility product of the hematite nanoparticles was size and age dependent. The results showed that the solubility product decreased over time as particle hydrodynamic diameter increased. The novelty of this approach lies in the relationship of time-resolved changes in thermodynamic quantities of hematite nanoparticles. In addition, the time span of more than five years explores true long-term aging for hematite nanoparticles making this research unique. This study could have important implications for engineered treatment procedures and interpretations of naturally occurring processes which are thus far not well understood.

Degree Date

Fall 12-2020

Document Type

Dissertation

Degree Name

Ph.D.

Department

Civil and Environmental Engineering

Advisor

Andrew Quicksall

Second Advisor

John Easton,

Third Advisor

Rita Economos,

Fourth Advisor

Jaewook Myung,

Fifth Advisor

David Willis

Subject Area

Chemical Engineering, Civil Engineering, Materials Science

Number of Pages

152

Format

.pdf

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Available for download on Thursday, October 08, 2026

Share

COinS