Subject Area

Civil Engineering

Abstract

This dissertation develops and tests a new data-driven framework for short-term roadway pluvial flash flood (PFF) risk estimation at the scale of road segments using crowdsourced navigation data and a simplified physics-based PFF model. Pluvial flash flooding (PFF) is defined as localized floods caused by an overwhelmed natural or engineered drainage system. This study develops a data curation and computational framework for data collection, preprocessing, and modeling to estimate the risk of PFF at road-segment scales. A hybrid approach is also developed that couples a statistical model and a simplified physics-based simulation model in a machine learning (ML) model to rapidly predict the risk of roadway PFF using Waze alerts in real-time.

Degree Date

Fall 12-17-2022

Document Type

Thesis

Degree Name

Ph.D.

Department

Civil and Environmental Engineering

Advisor

Barbara Minsker

Format

.pdf

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS