Subject Area

Industrial/Manufacturing Engineering

Abstract

In this dissertation, we present novel sampling-based algorithms for solving two-stage stochastic programming problems. Sampling-based methods provide an efficient approach to solving large-scale stochastic programs where uncertainty is possibly defined on continuous support. When sampling-based methods are employed, the process is usually viewed in two steps - sampling and optimization. When these two steps are performed in sequence, the overall process can be computationally very expensive. In this dissertation, we utilize the framework of internal-sampling where sampling and optimization steps are performed concurrently. The dissertation comprises of two parts. In the first part, we design a new sampling technique for solving two-stage stochastic linear programs with continuous recourse. We incorporate this technique within an internal-sampling framework of stochastic decomposition. In the second part of the dissertation, we design an internal-sampling-based algorithm for solving two-stage stochastic mixed-integer programs with continuous recourse. We design a new stochastic branch-and-cut procedure for solving this class of optimization problems. Finally, we show the efficiency of this method for solving large-scale practical problems arising in logistics and finance.

Degree Date

Fall 12-18-2021

Document Type

Thesis

Degree Name

Ph.D.

Department

Operations Research and Engineering Management

Advisor

Harsha Gangammanavar

Second Advisor

Halit Üster

Number of Pages

149

Format

.pdf

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Available for download on Saturday, December 13, 2025

Share

COinS