Subject Area
Bioengineering and Biomedical Engineering, Chemistry, Materials Science, Physical Sciences
Abstract
I. Two different series of non–degradable polysiloxane networks were prepared for the encapsulation and controlled release of a small molecule agent. For the first series, hydrosilylation was utilized to prepare networks of varying crosslink densities, as determined from swelling studies, from vinyl terminated and silylhydride functional poly(dimethyl)siloxanes. For the second series, the thiol-ene reaction was utilized to prepare networks of varying crosslink densities, as determined from swelling studies, from vinyl terminated and mercaptopropyl functional poly(dimethyl)siloxanes. Nile red dye was used as an encapsulated agent and dye release from each series of networks was measured using UV–vis spectroscopy to determine controllability of encapsulated agent release from each network series through crosslink densities and thioether polar group concentration. In addition, the networks were analyzed via dielectric analysis to determine network polarity and its effect on dye release. Multi-layered network systems were also prepared to study the ability of producing delivery devices capable of utilizing varying crosslink densities to physically affect the directionality and amount of encapsulated agent release.
II. A series of additive free, hydrolytically degradable furyl–maleimide networks were prepared for the encapsulation and controlled release of a small molecule agent. The Diels–Alder vii reaction was utilized to prepare networks with varying degradation rates using a tri–functional furyl silane, with either a bi-functional maleimide silane, or a bi-functional maleimide disiloxane. The thermal characteristics of the networks were studied through Differential Scanning Calorimetry to determine crosslinking reaction completion and material characteristics. Degradation rates for the networks were determined through mass loss studies in buffered saline at 37 °C. Disodium fluorescein dye was used as an encapsulated agent and dye release from the networks was measured using UV–vis spectroscopy. The primary product of degradation for the networks was characterized by 1H NMR spectroscopy and synthesized through Diels–Alder chemistry. A toxicity study of the synthesized degradation product was performed via an MTT assay to determine its cellular toxicity.
Degree Date
Spring 5-16-2020
Document Type
Dissertation
Degree Name
Ph.D.
Department
Chemistry
Advisor
David Y. Son
Number of Pages
246
Format
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
Recommended Citation
Bunton, Caleb M., "I. Non-Degradable Polysiloxane Networks for Controlled Release Applications, and II. Additive Free, Degradable Silyl-Ether Furyl-Maleimide Networks" (2020). Chemistry Theses and Dissertations. 16.
https://scholar.smu.edu/hum_sci_chemistry_etds/16
Included in
Biomedical and Dental Materials Commons, Materials Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, Polymer Chemistry Commons