Abstract

On 7 May 2015, a MW 4.0 earthquake occurred near Venus, northeast Johnson County, Texas, in an area of the Bend Arch-Fort Worth Basin that reports long-term, high-volume wastewater disposal and has hosted felt earthquakes since 2009. Scientists at SMU deployed a local seismic network and purchased nearby seismic reflection data to capture additional events, identify and image the causative fault, and explore potential links between ongoing industry activity and seismicity. Double-difference derived hypocenter relocations of the local earthquake catalog indicate a fault striking ~230oN, dipping to the west, consistent with a nodal plane of the MW 4.0 regional moment tensor. Fault plane solutions, calculated using a combination of P-wave first motions and S to P amplitude ratios, indicate normal faulting, with B-axes oriented parallel to maximum horizontal stress. Based on seismic reflection data, the reactivated basement fault penetrates the Ordovician disposal layer and Mississippian production layer, but does not displace post-Lower Pennsylvanian units. The fault rotates counter-clockwise north of current seismicity to become non-critically oriented within the modern stress field. Template matching at regional stations indicates that low magnitude earthquakes with similar waveforms began in April 2008. Pressure data from five saltwater disposal wells within 5 km of the active fault indicate a disposal formation that is 0.9-4.8 MPa above hydrostatic. I suggest that the injection of 28,000,000 m3 of wastewater between 2006 and 2016 at these wells led to an increase in subsurface pore fluid pressure that contributed to the triggering of this long-lived earthquake sequence. The 2015 MW 4.0 event represents the largest event of a continuing evolution of slip on a causative fault, with increasing magnitude over time.

Degree Date

Spring 5-20-2017

Document Type

Thesis

Degree Name

M.S.

Department

Earth Sciences

Advisor

Heather DeShon

Second Advisor

Beatrice Magnani

Third Advisor

Brian Stump

Number of Pages

158

Format

.pdf

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS