Andrew Soch, Research Engineer

Publication Date



Magnesium, as the lightest structural metal, has been widely used in the automotive and aerospace industries. Porosity is the main issue in the welding of magnesium alloys and can be caused by surface coatings, hydrogen gas, pre-existing porosity, the collapse of an unstable keyhole and vaporization of alloying elements. In this study, the effect of the oxide layer on pore generation in the welding of AZ31B-H24 magnesium alloy is investigated. A fiber laser with a power of up to 4 kW is used to weld samples in a lap joint configuration. Two groups of samples are studied: as received (AR) surfaces (where an oxide layer remains on the surface) and treated surfaces. The surface treatment includes two techniques: mechanical removal (MR) and the use of a plasma arc (PA) as a preheating source. Also, a separate set of experiments are designed for preheating samples in a furnace in order to investigate whether the pore mitigation effect of a plasma arc is caused by preheating. Observations include a weld bead profile achieved through optical microscopy, chemical compositions tested by Electron Dispersive Spectroscopy (EDS), and mechanical properties measured with a tensile test. The results obtained show that the preheating effect of a plasma arc procedure can effectively mitigate pore generation. The tensileshear results reveal that PA samples have a higher strength than other groups of samples.

Document Type

Conference Proceeding


Laser welding, magnesium alloy, AZ31B, porosity, preheating


Engineering | Manufacturing | Mechanical Engineering


Presented at ASME-IMECE 2012 at Houston. Reference: M. Harooni, F. Kong, B. Carlson, R. Kovacevic, "Mitigation of Pore Generation in Laser Welding of Magnesium Alloy AZ31B in Lap Joint Configuration", ASME-IMECE proceedings, 2012, Houston, TX



Included in

Manufacturing Commons