Subject Area

Computer Engineering, Computer Science

Abstract

We discuss how the Fast Multipole Method (FMM) applied to a boundary concentrated mesh can be used to evaluate volume potentials that arise in the boundary element method. If $h$ is the meshwidth near the boundary, then the algorithm can compute the potential in nearly $\Ord(h^{-2})$ operations while maintaining an $\Ord(h^p)$ convergence of the error. The effectiveness of the algorithms are demonstrated by solving boundary integral equations of the Poisson equation.

Degree Date

Summer 8-4-2021

Document Type

Dissertation

Degree Name

Ph.D.

Department

Mathematics

Advisor

Dr. Johannes Tausch

Number of Pages

93

Format

.pdf

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS